利用同步加速器质量的实验室x射线吸收光谱揭示缺陷钒铁氧体中的电化学阳离子储存机制

Ryan H. DeBlock, Hunter O. Ford, Christopher N. Chervin, Debra R. Rolison, Michelle D. Johannes, Jeffrey W. Long
{"title":"利用同步加速器质量的实验室x射线吸收光谱揭示缺陷钒铁氧体中的电化学阳离子储存机制","authors":"Ryan H. DeBlock, Hunter O. Ford, Christopher N. Chervin, Debra R. Rolison, Michelle D. Johannes, Jeffrey W. Long","doi":"10.1149/ma2023-01472520mtgabs","DOIUrl":null,"url":null,"abstract":"X-ray absorption spectroscopy (XAS) is a critical tool for investigating new materials for electrochemical energy storage, providing important information on metal oxidation state and element-specific coordination. Historically, XAS measurements had required the energy specificity and brilliance of a synchrotron facility, but recent advances in detectors and optics are bringing XAS capabilities to the laboratory setting with multiple commercial instruments available. At the Naval Research Laboratory, we use laboratory-based XAS to study a class of disordered vanadium ferrite (VFe 2 O x ) aerogels that exhibit promising performance for electrochemical energy-storage applications such as rechargeable lithium-ion batteries. 1,2 The structure and composition of these materials are readily varied via modifications to the epoxide-promoted sol–gel reaction of iron chloride and vanadium isopropoxide (e.g., substitution with other cations such as Al 3+ ), 2 as well as post-synthesis thermal treatments that render disordered, defective, or nanocrystalline forms of a given composition. The resulting series of VFe 2 O x materials are evaluated by XAS in both ex situ and in situ configurations, including as powder-composite cathodes versus lithium metal in pouch cells with conventional nonaqueous lithium-ion electrolyte. X-ray Absorption Near-edge Spectroscopy (XANES) at the V K-edge and Fe K-edge is used to track V and Fe oxidation state, respectively, permitting the assignment of metal-centered redox across the broad potential range over which these materials are electrochemically active (2–3.4 V vs Li/Li + ). Extended X-ray Absorption Fine Structure (EXAFS) analysis provides information on V- or Fe-specific coordination as a function of composition, structure, and state-of-charge. Parallel computation efforts using Density-Functional Theory offer a complementary feedback loop with experimental XANES and EXAFS to achieve a sophisticated description of these complex battery materials. 1. C. N. Chervin, J. S. Ko, B. W. Miller, L. Dudek, A. N. Mansour, M. D. Donakowski, T. Brintlinger, P. Gogotsi, S. Chattopadhyay, T. Shibata, J. F. Parker, B. P. Hahn, D. R. Rolison, and J. W. Long, J. Mater. Chem. A 3 , 12059 (2015). 2. C. N. Chervin, R. H. DeBlock, J. F. Parker, B. M. Hudak, N. L. Skeele, J. S. Ko, D. R. Rolison, and J. W. Long, RSC Adv. 11 , 14495 (2021).","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering Electrochemical Cation-Storage Mechanisms in Defective Vanadium Ferrites Using Synchrotron-Quality, in-Lab X-Ray Absorption Spectroscopy\",\"authors\":\"Ryan H. DeBlock, Hunter O. Ford, Christopher N. Chervin, Debra R. Rolison, Michelle D. Johannes, Jeffrey W. Long\",\"doi\":\"10.1149/ma2023-01472520mtgabs\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"X-ray absorption spectroscopy (XAS) is a critical tool for investigating new materials for electrochemical energy storage, providing important information on metal oxidation state and element-specific coordination. Historically, XAS measurements had required the energy specificity and brilliance of a synchrotron facility, but recent advances in detectors and optics are bringing XAS capabilities to the laboratory setting with multiple commercial instruments available. At the Naval Research Laboratory, we use laboratory-based XAS to study a class of disordered vanadium ferrite (VFe 2 O x ) aerogels that exhibit promising performance for electrochemical energy-storage applications such as rechargeable lithium-ion batteries. 1,2 The structure and composition of these materials are readily varied via modifications to the epoxide-promoted sol–gel reaction of iron chloride and vanadium isopropoxide (e.g., substitution with other cations such as Al 3+ ), 2 as well as post-synthesis thermal treatments that render disordered, defective, or nanocrystalline forms of a given composition. The resulting series of VFe 2 O x materials are evaluated by XAS in both ex situ and in situ configurations, including as powder-composite cathodes versus lithium metal in pouch cells with conventional nonaqueous lithium-ion electrolyte. X-ray Absorption Near-edge Spectroscopy (XANES) at the V K-edge and Fe K-edge is used to track V and Fe oxidation state, respectively, permitting the assignment of metal-centered redox across the broad potential range over which these materials are electrochemically active (2–3.4 V vs Li/Li + ). Extended X-ray Absorption Fine Structure (EXAFS) analysis provides information on V- or Fe-specific coordination as a function of composition, structure, and state-of-charge. Parallel computation efforts using Density-Functional Theory offer a complementary feedback loop with experimental XANES and EXAFS to achieve a sophisticated description of these complex battery materials. 1. C. N. Chervin, J. S. Ko, B. W. Miller, L. Dudek, A. N. Mansour, M. D. Donakowski, T. Brintlinger, P. Gogotsi, S. Chattopadhyay, T. Shibata, J. F. Parker, B. P. Hahn, D. R. Rolison, and J. W. Long, J. Mater. Chem. A 3 , 12059 (2015). 2. C. N. Chervin, R. H. DeBlock, J. F. Parker, B. M. Hudak, N. L. Skeele, J. S. Ko, D. R. Rolison, and J. W. Long, RSC Adv. 11 , 14495 (2021).\",\"PeriodicalId\":11461,\"journal\":{\"name\":\"ECS Meeting Abstracts\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Meeting Abstracts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/ma2023-01472520mtgabs\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Meeting Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/ma2023-01472520mtgabs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

x射线吸收光谱(XAS)是研究电化学储能新材料的重要工具,提供了金属氧化态和元素特定配位的重要信息。从历史上看,XAS测量需要同步加速器设备的能量专一性和亮度,但最近探测器和光学的进步将XAS功能带到了实验室环境中,有多种商用仪器可用。在海军研究实验室,我们使用基于实验室的XAS来研究一类无序钒铁氧体(VFe 2o x)气凝胶,这种气凝胶在电化学储能应用(如可充电锂离子电池)中表现出很好的性能。1,2这些材料的结构和组成很容易通过对环氧化物促进的氯化铁和异丙醇钒的溶胶-凝胶反应的修饰(例如,用其他阳离子如Al 3+取代),2以及合成后的热处理来改变给定组合物的无序、缺陷或纳米晶形式。所得的vfe2ox材料系列在非原位和原位配置下都通过XAS进行了评估,包括作为粉末复合阴极与使用传统非水锂离子电解质的袋状电池中的锂金属。x射线吸收近边光谱(XANES)在V - k边缘和Fe - k边缘分别用于跟踪V和Fe的氧化状态,允许在这些材料具有电化学活性的广泛电位范围内(2-3.4 V vs Li/Li +)分配金属中心氧化还原。扩展x射线吸收精细结构(EXAFS)分析提供了V或fe特异性配位的信息,作为组成,结构和电荷状态的函数。使用密度泛函理论的并行计算工作与实验XANES和EXAFS提供了互补的反馈回路,以实现对这些复杂电池材料的复杂描述。1. C. N. Chervin, J. S. Ko, B. W. Miller, L. Dudek, A. N. Mansour, M. D. Donakowski, T. Brintlinger, P. Gogotsi, S. Chattopadhyay, T. Shibata, J. F. Parker, B. P. Hahn, D. R. Rolison, J. W. Long, J. Mater。化学。农业工程学报,2015,39(5)。2. 陈志强,陈志强,陈志强,陈志强,陈志强,陈志强,陈志强,陈志强,陈志强,陈志强,陈志强,陈志强,陈志强,陈志强,陈志强,2014(4)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncovering Electrochemical Cation-Storage Mechanisms in Defective Vanadium Ferrites Using Synchrotron-Quality, in-Lab X-Ray Absorption Spectroscopy
X-ray absorption spectroscopy (XAS) is a critical tool for investigating new materials for electrochemical energy storage, providing important information on metal oxidation state and element-specific coordination. Historically, XAS measurements had required the energy specificity and brilliance of a synchrotron facility, but recent advances in detectors and optics are bringing XAS capabilities to the laboratory setting with multiple commercial instruments available. At the Naval Research Laboratory, we use laboratory-based XAS to study a class of disordered vanadium ferrite (VFe 2 O x ) aerogels that exhibit promising performance for electrochemical energy-storage applications such as rechargeable lithium-ion batteries. 1,2 The structure and composition of these materials are readily varied via modifications to the epoxide-promoted sol–gel reaction of iron chloride and vanadium isopropoxide (e.g., substitution with other cations such as Al 3+ ), 2 as well as post-synthesis thermal treatments that render disordered, defective, or nanocrystalline forms of a given composition. The resulting series of VFe 2 O x materials are evaluated by XAS in both ex situ and in situ configurations, including as powder-composite cathodes versus lithium metal in pouch cells with conventional nonaqueous lithium-ion electrolyte. X-ray Absorption Near-edge Spectroscopy (XANES) at the V K-edge and Fe K-edge is used to track V and Fe oxidation state, respectively, permitting the assignment of metal-centered redox across the broad potential range over which these materials are electrochemically active (2–3.4 V vs Li/Li + ). Extended X-ray Absorption Fine Structure (EXAFS) analysis provides information on V- or Fe-specific coordination as a function of composition, structure, and state-of-charge. Parallel computation efforts using Density-Functional Theory offer a complementary feedback loop with experimental XANES and EXAFS to achieve a sophisticated description of these complex battery materials. 1. C. N. Chervin, J. S. Ko, B. W. Miller, L. Dudek, A. N. Mansour, M. D. Donakowski, T. Brintlinger, P. Gogotsi, S. Chattopadhyay, T. Shibata, J. F. Parker, B. P. Hahn, D. R. Rolison, and J. W. Long, J. Mater. Chem. A 3 , 12059 (2015). 2. C. N. Chervin, R. H. DeBlock, J. F. Parker, B. M. Hudak, N. L. Skeele, J. S. Ko, D. R. Rolison, and J. W. Long, RSC Adv. 11 , 14495 (2021).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信