毛细管桥的弯曲能与接触角的直接关系

IF 1.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Olivier Millet, Gérard Gagneux
{"title":"毛细管桥的弯曲能与接触角的直接关系","authors":"Olivier Millet, Gérard Gagneux","doi":"10.5802/crmeca.200","DOIUrl":null,"url":null,"abstract":"The didactic object of these developments on differential geometry of curves and surfaces is to present fine and convenient mathematical strategies, adapted to the study of capillary bridges. The common thread is to be able to calculate accurately in any situation the bending stress over the free surface, represented mathematically by the integral of the Gaussian curvature over the surface (called the total curvature) involved in the generalized Young–Laplace equation. We prove in particular that the resultant of the bending energy is directly linked to the wetting angles at the contact line.","PeriodicalId":10566,"journal":{"name":"Comptes Rendus. Chimie","volume":"76 19","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A direct relation between bending energy and contact angles for capillary bridges\",\"authors\":\"Olivier Millet, Gérard Gagneux\",\"doi\":\"10.5802/crmeca.200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The didactic object of these developments on differential geometry of curves and surfaces is to present fine and convenient mathematical strategies, adapted to the study of capillary bridges. The common thread is to be able to calculate accurately in any situation the bending stress over the free surface, represented mathematically by the integral of the Gaussian curvature over the surface (called the total curvature) involved in the generalized Young–Laplace equation. We prove in particular that the resultant of the bending energy is directly linked to the wetting angles at the contact line.\",\"PeriodicalId\":10566,\"journal\":{\"name\":\"Comptes Rendus. Chimie\",\"volume\":\"76 19\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus. Chimie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmeca.200\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus. Chimie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmeca.200","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这些关于曲线和曲面微分几何的发展的教学目标是提出适合于毛细管桥研究的精细和方便的数学策略。共同的目标是能够在任何情况下精确地计算自由表面上的弯曲应力,用广义杨-拉普拉斯方程中涉及的表面上的高斯曲率的积分(称为总曲率)在数学上表示。我们特别证明了弯曲能的结果与接触线上的润湿角直接相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A direct relation between bending energy and contact angles for capillary bridges
The didactic object of these developments on differential geometry of curves and surfaces is to present fine and convenient mathematical strategies, adapted to the study of capillary bridges. The common thread is to be able to calculate accurately in any situation the bending stress over the free surface, represented mathematically by the integral of the Gaussian curvature over the surface (called the total curvature) involved in the generalized Young–Laplace equation. We prove in particular that the resultant of the bending energy is directly linked to the wetting angles at the contact line.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Comptes Rendus. Chimie
Comptes Rendus. Chimie 化学-化学综合
CiteScore
2.10
自引率
25.00%
发文量
89
审稿时长
3 months
期刊介绍: The Comptes Rendus - Chimie are a free-of-charge, open access and peer-reviewed electronic scientific journal publishing original research articles. It is one of seven journals published by the Académie des sciences. Its objective is to enable researchers to quickly share their work with the international scientific community. The Comptes Rendus - Chimie also publish journal articles, thematic issues and articles reflecting the history of the Académie des sciences and its current scientific activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信