欧拉-泊斯威尔/达尔文方程和欧拉-麦克斯韦方程的渐近层次

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jakob Möller, Norbert J. Mauser
{"title":"欧拉-泊斯威尔/达尔文方程和欧拉-麦克斯韦方程的渐近层次","authors":"Jakob Möller, Norbert J. Mauser","doi":"10.3233/asy-231864","DOIUrl":null,"url":null,"abstract":"In this paper we introduce the (unipolar) pressureless Euler–Poisswell equation for electrons as the O ( 1 / c ) semi-relativistic approximation and the (unipolar) pressureless Euler–Darwin equation as the O ( 1 / c 2 ) semi-relativistic approximation of the (unipolar) pressureless Euler–Maxwell equation. In the “infinity-ion-mass” limit, the unipolar Euler–Maxwell equation arises from the bipolar Euler–Maxwell equation, describing a coupled system for a plasma of electrons and ions. The non-relativistic limit c → ∞ of the Euler–Maxwell equation is the repulsive Euler–Poisson equation with electric force. We propose that the Euler–Poisswell equation, where the Euler equation with electric force is coupled to the magnetostatic O ( 1 / c ) approximation of Maxwell’s equations, is the correct semi-relativistic O ( 1 / c ) approximation of the Euler–Maxwell equation. In the Euler–Poisswell equation the fluid dynamics are decoupled from the magnetic field since the Lorentz force reduces to the electric force. The first non-trivial interaction with the magnetic field is at the O ( 1 / c 2 ) level in the Euler–Darwin equation. This is a consistent and self-consistent model of order O ( 1 / c 2 ) and includes the full Lorentz force, which is relativistic at O ( 1 / c 2 ). The Euler–Poisswell equation also arises as the semiclassical limit of the quantum Pauli–Poisswell equation, which is the O ( 1 / c ) approximation of the relativistic Dirac–Maxwell equation. We also present a local wellposedness theory for the Euler–Poisswell equation. The Euler–Maxwell system couples the non-relativistic Euler equation and the relativistic Maxwell equations and thus it is not fully consistent in 1 / c. The consistent fully relativistic model is the relativistic Euler–Maxwell equation where Maxwell’s equations are coupled to the relativistic Euler equation – a model that is neglected in the mathematics community. We also present the relativistic Euler–Darwin equation resulting as a O ( 1 / c 2 ) approximation of this model.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Euler–Poisswell/Darwin equation and the asymptotic hierarchy of the Euler–Maxwell equation\",\"authors\":\"Jakob Möller, Norbert J. Mauser\",\"doi\":\"10.3233/asy-231864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce the (unipolar) pressureless Euler–Poisswell equation for electrons as the O ( 1 / c ) semi-relativistic approximation and the (unipolar) pressureless Euler–Darwin equation as the O ( 1 / c 2 ) semi-relativistic approximation of the (unipolar) pressureless Euler–Maxwell equation. In the “infinity-ion-mass” limit, the unipolar Euler–Maxwell equation arises from the bipolar Euler–Maxwell equation, describing a coupled system for a plasma of electrons and ions. The non-relativistic limit c → ∞ of the Euler–Maxwell equation is the repulsive Euler–Poisson equation with electric force. We propose that the Euler–Poisswell equation, where the Euler equation with electric force is coupled to the magnetostatic O ( 1 / c ) approximation of Maxwell’s equations, is the correct semi-relativistic O ( 1 / c ) approximation of the Euler–Maxwell equation. In the Euler–Poisswell equation the fluid dynamics are decoupled from the magnetic field since the Lorentz force reduces to the electric force. The first non-trivial interaction with the magnetic field is at the O ( 1 / c 2 ) level in the Euler–Darwin equation. This is a consistent and self-consistent model of order O ( 1 / c 2 ) and includes the full Lorentz force, which is relativistic at O ( 1 / c 2 ). The Euler–Poisswell equation also arises as the semiclassical limit of the quantum Pauli–Poisswell equation, which is the O ( 1 / c ) approximation of the relativistic Dirac–Maxwell equation. We also present a local wellposedness theory for the Euler–Poisswell equation. The Euler–Maxwell system couples the non-relativistic Euler equation and the relativistic Maxwell equations and thus it is not fully consistent in 1 / c. The consistent fully relativistic model is the relativistic Euler–Maxwell equation where Maxwell’s equations are coupled to the relativistic Euler equation – a model that is neglected in the mathematics community. We also present the relativistic Euler–Darwin equation resulting as a O ( 1 / c 2 ) approximation of this model.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-231864\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/asy-231864","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文将电子的(单极)无压欧拉-泊斯威尔方程作为O (1 / c)半相对论近似,将(单极)无压欧拉-达尔文方程作为(单极)无压欧拉-麦克斯韦方程的O (1 / c)半相对论近似引入。在“无限离子质量”极限中,单极欧拉-麦克斯韦方程由双极欧拉-麦克斯韦方程衍生而来,描述了电子和离子等离子体的耦合系统。欧拉-麦克斯韦方程的非相对论极限c→∞是带电磁力的排斥欧拉-泊松方程。我们提出欧拉-泊斯韦尔方程是欧拉-麦克斯韦方程的正确的半相对论性O (1 / c)近似,其中欧拉方程与电磁力耦合到麦克斯韦方程的静磁O (1 / c)近似。在欧拉-泊斯韦尔方程中,流体动力学与磁场解耦,因为洛伦兹力减小为电磁力。在欧拉-达尔文方程中,第一个与磁场的非平凡相互作用是在0 (1 / c 2)水平上。这是一个O (1 / c 2)阶的一致和自一致的模型,并包括完整的洛伦兹力,它在O (1 / c 2)是相对论性的。欧拉-泊斯韦尔方程也是量子泡利-泊斯韦尔方程的半经典极限,它是相对论性狄拉克-麦克斯韦方程的0 (1 / c)近似。我们也给出了Euler-Poisswell方程的局部适定性理论。欧拉-麦克斯韦系统耦合了非相对论性欧拉方程和相对论性麦克斯韦方程,因此它在1 / c中不是完全一致的。一致的完全相对论性模型是相对论性欧拉-麦克斯韦方程,其中麦克斯韦方程与相对论性欧拉方程耦合-一个在数学界被忽视的模型。我们还提出了相对论欧拉-达尔文方程,作为该模型的O (1 / c 2)近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Euler–Poisswell/Darwin equation and the asymptotic hierarchy of the Euler–Maxwell equation
In this paper we introduce the (unipolar) pressureless Euler–Poisswell equation for electrons as the O ( 1 / c ) semi-relativistic approximation and the (unipolar) pressureless Euler–Darwin equation as the O ( 1 / c 2 ) semi-relativistic approximation of the (unipolar) pressureless Euler–Maxwell equation. In the “infinity-ion-mass” limit, the unipolar Euler–Maxwell equation arises from the bipolar Euler–Maxwell equation, describing a coupled system for a plasma of electrons and ions. The non-relativistic limit c → ∞ of the Euler–Maxwell equation is the repulsive Euler–Poisson equation with electric force. We propose that the Euler–Poisswell equation, where the Euler equation with electric force is coupled to the magnetostatic O ( 1 / c ) approximation of Maxwell’s equations, is the correct semi-relativistic O ( 1 / c ) approximation of the Euler–Maxwell equation. In the Euler–Poisswell equation the fluid dynamics are decoupled from the magnetic field since the Lorentz force reduces to the electric force. The first non-trivial interaction with the magnetic field is at the O ( 1 / c 2 ) level in the Euler–Darwin equation. This is a consistent and self-consistent model of order O ( 1 / c 2 ) and includes the full Lorentz force, which is relativistic at O ( 1 / c 2 ). The Euler–Poisswell equation also arises as the semiclassical limit of the quantum Pauli–Poisswell equation, which is the O ( 1 / c ) approximation of the relativistic Dirac–Maxwell equation. We also present a local wellposedness theory for the Euler–Poisswell equation. The Euler–Maxwell system couples the non-relativistic Euler equation and the relativistic Maxwell equations and thus it is not fully consistent in 1 / c. The consistent fully relativistic model is the relativistic Euler–Maxwell equation where Maxwell’s equations are coupled to the relativistic Euler equation – a model that is neglected in the mathematics community. We also present the relativistic Euler–Darwin equation resulting as a O ( 1 / c 2 ) approximation of this model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信