{"title":"非线性扩散反应扩散系统的快速反应极限","authors":"Elaine Crooks, Yini Du","doi":"10.1142/s0219199723500426","DOIUrl":null,"url":null,"abstract":"In this paper, we present an approach to characterizing fast-reaction limits of systems with nonlinear diffusion, when there are either two reaction–diffusion equations, or one reaction–diffusion equation and one ordinary differential equation, on unbounded domains. Here, we replace the terms of the form [Formula: see text] in usual reaction–diffusion equation, which represent linear diffusion, by terms of form [Formula: see text], representing nonlinear diffusion. We prove the convergence in the fast-reaction limit [Formula: see text] that is determined by the unique solution of a certain scalar nonlinear diffusion problem.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast reaction limit of reaction diffusion systems with nonlinear diffusion\",\"authors\":\"Elaine Crooks, Yini Du\",\"doi\":\"10.1142/s0219199723500426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an approach to characterizing fast-reaction limits of systems with nonlinear diffusion, when there are either two reaction–diffusion equations, or one reaction–diffusion equation and one ordinary differential equation, on unbounded domains. Here, we replace the terms of the form [Formula: see text] in usual reaction–diffusion equation, which represent linear diffusion, by terms of form [Formula: see text], representing nonlinear diffusion. We prove the convergence in the fast-reaction limit [Formula: see text] that is determined by the unique solution of a certain scalar nonlinear diffusion problem.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199723500426\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219199723500426","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Fast reaction limit of reaction diffusion systems with nonlinear diffusion
In this paper, we present an approach to characterizing fast-reaction limits of systems with nonlinear diffusion, when there are either two reaction–diffusion equations, or one reaction–diffusion equation and one ordinary differential equation, on unbounded domains. Here, we replace the terms of the form [Formula: see text] in usual reaction–diffusion equation, which represent linear diffusion, by terms of form [Formula: see text], representing nonlinear diffusion. We prove the convergence in the fast-reaction limit [Formula: see text] that is determined by the unique solution of a certain scalar nonlinear diffusion problem.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.