Baptiste Joste, Benoit Devincre, Riccardo Gatti, Henry Proudhon
{"title":"离散位错动力学模拟FCC多晶晶内塑性变形局部化","authors":"Baptiste Joste, Benoit Devincre, Riccardo Gatti, Henry Proudhon","doi":"10.1088/1361-651x/ad02b0","DOIUrl":null,"url":null,"abstract":"Abstract Strain localization mechanisms taking place in polycrystal grains are investigated using Discrete Dislocation Dynamics (DDDs) simulations. First, elastic Finite Element Method simulations are used to calculate the intragranular stress distribution linked to strain incompatibilities between grains. Many configurations are tested to evaluate the stress heterogeneity and constitute a database for DDD simulations. From the analysis of these microstructures, a criterion is proposed to identify the grains where the emergence of the localization of the deformation is the most likely. Then, DDD simulations are used to explore the plastic strain localization phenomenon at the grain scale. Those simulations show that stress concentrations close to a polycrystal quadruple node can play a fundamental role in plastic strain localization. This work paves the way for future investigations to be made thanks to DDD simulations regarding slip band initiation and strain relaxation phenomena.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"74 17","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of intragranular plastic deformation localization in FCC polycrystals by Discrete Dislocation Dynamics\",\"authors\":\"Baptiste Joste, Benoit Devincre, Riccardo Gatti, Henry Proudhon\",\"doi\":\"10.1088/1361-651x/ad02b0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Strain localization mechanisms taking place in polycrystal grains are investigated using Discrete Dislocation Dynamics (DDDs) simulations. First, elastic Finite Element Method simulations are used to calculate the intragranular stress distribution linked to strain incompatibilities between grains. Many configurations are tested to evaluate the stress heterogeneity and constitute a database for DDD simulations. From the analysis of these microstructures, a criterion is proposed to identify the grains where the emergence of the localization of the deformation is the most likely. Then, DDD simulations are used to explore the plastic strain localization phenomenon at the grain scale. Those simulations show that stress concentrations close to a polycrystal quadruple node can play a fundamental role in plastic strain localization. This work paves the way for future investigations to be made thanks to DDD simulations regarding slip band initiation and strain relaxation phenomena.\",\"PeriodicalId\":18648,\"journal\":{\"name\":\"Modelling and Simulation in Materials Science and Engineering\",\"volume\":\"74 17\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Materials Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-651x/ad02b0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad02b0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Simulation of intragranular plastic deformation localization in FCC polycrystals by Discrete Dislocation Dynamics
Abstract Strain localization mechanisms taking place in polycrystal grains are investigated using Discrete Dislocation Dynamics (DDDs) simulations. First, elastic Finite Element Method simulations are used to calculate the intragranular stress distribution linked to strain incompatibilities between grains. Many configurations are tested to evaluate the stress heterogeneity and constitute a database for DDD simulations. From the analysis of these microstructures, a criterion is proposed to identify the grains where the emergence of the localization of the deformation is the most likely. Then, DDD simulations are used to explore the plastic strain localization phenomenon at the grain scale. Those simulations show that stress concentrations close to a polycrystal quadruple node can play a fundamental role in plastic strain localization. This work paves the way for future investigations to be made thanks to DDD simulations regarding slip band initiation and strain relaxation phenomena.
期刊介绍:
Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation.
Subject coverage:
Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.