{"title":"约束机械系统热分析中的动能和应变能方法:比较研究","authors":"Moataz Abdalla, Ahmed A. Shabana","doi":"10.1115/1.4063725","DOIUrl":null,"url":null,"abstract":"Abstract Despite the unconstrained thermal expansion is assumed stress-free, the conventional FE approach requires formulating elastic forces, and this in turn leads to elastic stresses. A displacement-based formulation, on the other hand, can be used to address this limitation by converting the thermal energy to kinetic energy instead of strain energy. The fundamental differences between the strain- and kinetic-energy approaches are discussed. It is shown that the unconstrained thermal expansion predicted using the kinetic-energy approach is independent of the continuum constitutive model, and consequently, such a formulation can be used for both solids and fluids. The displacement (kinetic) and strain (stress) formulations are discussed to shed light on the mechanism of thermal expansion at the macroscopic level. The thermal-expansion displacement formulation (TEDF) and position-gradient multiplicative decomposition into thermal and mechanical parts are used to compute the thermal stresses due to boundary and motion constraints (BMC). TEDF implementation issues are discussed and constant matrices evaluated at a preprocessing stage after applying sweeping matrix technique to eliminate rigid-body thermal-displacement translational modes are identified. Furthermore, the softening effect due to the constitutive-model dependence on the temperature is investigated at high temperatures. Numerical results are presented to show fundamental differences between the TEDF approach that converts heat energy to kinetic energy and conventional FE approach that converts heat energy to strain energy that produces elastic stresses.","PeriodicalId":54858,"journal":{"name":"Journal of Computational and Nonlinear Dynamics","volume":"75 5","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetic- and Strain-Energy Approaches in the Thermal Analysis of Constrained Mechanical Systems: A Comparative Study\",\"authors\":\"Moataz Abdalla, Ahmed A. Shabana\",\"doi\":\"10.1115/1.4063725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Despite the unconstrained thermal expansion is assumed stress-free, the conventional FE approach requires formulating elastic forces, and this in turn leads to elastic stresses. A displacement-based formulation, on the other hand, can be used to address this limitation by converting the thermal energy to kinetic energy instead of strain energy. The fundamental differences between the strain- and kinetic-energy approaches are discussed. It is shown that the unconstrained thermal expansion predicted using the kinetic-energy approach is independent of the continuum constitutive model, and consequently, such a formulation can be used for both solids and fluids. The displacement (kinetic) and strain (stress) formulations are discussed to shed light on the mechanism of thermal expansion at the macroscopic level. The thermal-expansion displacement formulation (TEDF) and position-gradient multiplicative decomposition into thermal and mechanical parts are used to compute the thermal stresses due to boundary and motion constraints (BMC). TEDF implementation issues are discussed and constant matrices evaluated at a preprocessing stage after applying sweeping matrix technique to eliminate rigid-body thermal-displacement translational modes are identified. Furthermore, the softening effect due to the constitutive-model dependence on the temperature is investigated at high temperatures. Numerical results are presented to show fundamental differences between the TEDF approach that converts heat energy to kinetic energy and conventional FE approach that converts heat energy to strain energy that produces elastic stresses.\",\"PeriodicalId\":54858,\"journal\":{\"name\":\"Journal of Computational and Nonlinear Dynamics\",\"volume\":\"75 5\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Nonlinear Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063725\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Nonlinear Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063725","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Kinetic- and Strain-Energy Approaches in the Thermal Analysis of Constrained Mechanical Systems: A Comparative Study
Abstract Despite the unconstrained thermal expansion is assumed stress-free, the conventional FE approach requires formulating elastic forces, and this in turn leads to elastic stresses. A displacement-based formulation, on the other hand, can be used to address this limitation by converting the thermal energy to kinetic energy instead of strain energy. The fundamental differences between the strain- and kinetic-energy approaches are discussed. It is shown that the unconstrained thermal expansion predicted using the kinetic-energy approach is independent of the continuum constitutive model, and consequently, such a formulation can be used for both solids and fluids. The displacement (kinetic) and strain (stress) formulations are discussed to shed light on the mechanism of thermal expansion at the macroscopic level. The thermal-expansion displacement formulation (TEDF) and position-gradient multiplicative decomposition into thermal and mechanical parts are used to compute the thermal stresses due to boundary and motion constraints (BMC). TEDF implementation issues are discussed and constant matrices evaluated at a preprocessing stage after applying sweeping matrix technique to eliminate rigid-body thermal-displacement translational modes are identified. Furthermore, the softening effect due to the constitutive-model dependence on the temperature is investigated at high temperatures. Numerical results are presented to show fundamental differences between the TEDF approach that converts heat energy to kinetic energy and conventional FE approach that converts heat energy to strain energy that produces elastic stresses.
期刊介绍:
The purpose of the Journal of Computational and Nonlinear Dynamics is to provide a medium for rapid dissemination of original research results in theoretical as well as applied computational and nonlinear dynamics. The journal serves as a forum for the exchange of new ideas and applications in computational, rigid and flexible multi-body system dynamics and all aspects (analytical, numerical, and experimental) of dynamics associated with nonlinear systems. The broad scope of the journal encompasses all computational and nonlinear problems occurring in aeronautical, biological, electrical, mechanical, physical, and structural systems.