Marina A Ferreira, Eugenia Franco, Jani Lukkarinen, Alessia Nota, Juan J L Velazquez
{"title":"具有异常自相似源的混凝方程","authors":"Marina A Ferreira, Eugenia Franco, Jani Lukkarinen, Alessia Nota, Juan J L Velazquez","doi":"10.1088/1751-8121/ad0822","DOIUrl":null,"url":null,"abstract":"Abstract We study the long-time behaviour of the solutions to Smoluchowski coagulation equations with a source term of small clusters. The source drives the system out-of-equilibrium, leading to a rich range of different possible long-time behaviours, including anomalous self-similarity. The coagulation kernel is non-gelling, homogeneous, with homogeneity <?CDATA $\\gamma \\unicode{x2A7D} -1 $?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>γ</mml:mi> <mml:mtext>⩽</mml:mtext> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:math> , and behaves like <?CDATA $x^{\\gamma+\\lambda} y^{-\\lambda} $?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msup> <mml:mi>x</mml:mi> <mml:mrow> <mml:mi>γ</mml:mi> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> </mml:mrow> </mml:msup> <mml:msup> <mml:mi>y</mml:mi> <mml:mrow> <mml:mo>−</mml:mo> <mml:mi>λ</mml:mi> </mml:mrow> </mml:msup> </mml:math> when <?CDATA $y \\ll x$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>y</mml:mi> <mml:mo>≪</mml:mo> <mml:mi>x</mml:mi> </mml:math> with <?CDATA $\\gamma+2\\lambda \\gt 1$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>γ</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>λ</mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:math> . Our analysis shows that the long-time behaviour of the solutions depends on the parameters γ and λ . More precisely, we argue that the long-time behaviour is self-similar, although the scaling of the self-similar solutions depends on the sign of <?CDATA $\\gamma+\\lambda$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>γ</mml:mi> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> </mml:math> and on whether <?CDATA $\\gamma = -1$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>γ</mml:mi> <mml:mo>=</mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:math> or <?CDATA $\\gamma \\lt -1$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>γ</mml:mi> <mml:mo><</mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:math> . In all these cases, the scaling differs from the usual one that has been previously obtained when <?CDATA $\\gamma+2\\lambda \\lt 1$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>γ</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>λ</mml:mi> <mml:mo><</mml:mo> <mml:mn>1</mml:mn> </mml:math> or <?CDATA $\\gamma+2\\lambda \\unicode{x2A7E} 1, \\gamma \\gt -1$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>γ</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>λ</mml:mi> <mml:mtext>⩾</mml:mtext> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>γ</mml:mi> <mml:mo>></mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:math> . In the last part of the paper, we present some conjectures supporting the self-similar ansatz also for the critical case <?CDATA $\\gamma+2\\lambda = 1, \\gamma \\unicode{x2A7D} -1 $?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>γ</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>λ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>γ</mml:mi> <mml:mtext>⩽</mml:mtext> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:math> .","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"69 20","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coagulation equations with source leading to anomalousself-similarity\",\"authors\":\"Marina A Ferreira, Eugenia Franco, Jani Lukkarinen, Alessia Nota, Juan J L Velazquez\",\"doi\":\"10.1088/1751-8121/ad0822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the long-time behaviour of the solutions to Smoluchowski coagulation equations with a source term of small clusters. The source drives the system out-of-equilibrium, leading to a rich range of different possible long-time behaviours, including anomalous self-similarity. The coagulation kernel is non-gelling, homogeneous, with homogeneity <?CDATA $\\\\gamma \\\\unicode{x2A7D} -1 $?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>γ</mml:mi> <mml:mtext>⩽</mml:mtext> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:math> , and behaves like <?CDATA $x^{\\\\gamma+\\\\lambda} y^{-\\\\lambda} $?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:msup> <mml:mi>x</mml:mi> <mml:mrow> <mml:mi>γ</mml:mi> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> </mml:mrow> </mml:msup> <mml:msup> <mml:mi>y</mml:mi> <mml:mrow> <mml:mo>−</mml:mo> <mml:mi>λ</mml:mi> </mml:mrow> </mml:msup> </mml:math> when <?CDATA $y \\\\ll x$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>y</mml:mi> <mml:mo>≪</mml:mo> <mml:mi>x</mml:mi> </mml:math> with <?CDATA $\\\\gamma+2\\\\lambda \\\\gt 1$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>γ</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>λ</mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:math> . Our analysis shows that the long-time behaviour of the solutions depends on the parameters γ and λ . More precisely, we argue that the long-time behaviour is self-similar, although the scaling of the self-similar solutions depends on the sign of <?CDATA $\\\\gamma+\\\\lambda$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>γ</mml:mi> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> </mml:math> and on whether <?CDATA $\\\\gamma = -1$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>γ</mml:mi> <mml:mo>=</mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:math> or <?CDATA $\\\\gamma \\\\lt -1$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>γ</mml:mi> <mml:mo><</mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:math> . In all these cases, the scaling differs from the usual one that has been previously obtained when <?CDATA $\\\\gamma+2\\\\lambda \\\\lt 1$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>γ</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>λ</mml:mi> <mml:mo><</mml:mo> <mml:mn>1</mml:mn> </mml:math> or <?CDATA $\\\\gamma+2\\\\lambda \\\\unicode{x2A7E} 1, \\\\gamma \\\\gt -1$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>γ</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>λ</mml:mi> <mml:mtext>⩾</mml:mtext> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>γ</mml:mi> <mml:mo>></mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:math> . In the last part of the paper, we present some conjectures supporting the self-similar ansatz also for the critical case <?CDATA $\\\\gamma+2\\\\lambda = 1, \\\\gamma \\\\unicode{x2A7D} -1 $?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>γ</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>λ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>γ</mml:mi> <mml:mtext>⩽</mml:mtext> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:math> .\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"69 20\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad0822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad0822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coagulation equations with source leading to anomalousself-similarity
Abstract We study the long-time behaviour of the solutions to Smoluchowski coagulation equations with a source term of small clusters. The source drives the system out-of-equilibrium, leading to a rich range of different possible long-time behaviours, including anomalous self-similarity. The coagulation kernel is non-gelling, homogeneous, with homogeneity γ⩽−1 , and behaves like xγ+λy−λ when y≪x with γ+2λ>1 . Our analysis shows that the long-time behaviour of the solutions depends on the parameters γ and λ . More precisely, we argue that the long-time behaviour is self-similar, although the scaling of the self-similar solutions depends on the sign of γ+λ and on whether γ=−1 or γ<−1 . In all these cases, the scaling differs from the usual one that has been previously obtained when γ+2λ<1 or γ+2λ⩾1,γ>−1 . In the last part of the paper, we present some conjectures supporting the self-similar ansatz also for the critical case γ+2λ=1,γ⩽−1 .