一类非局部奇异椭圆问题的比较结果

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Barbara Brandolini, Ida de Bonis, Vincenzo Ferone, Bruno Volzone
{"title":"一类非局部奇异椭圆问题的比较结果","authors":"Barbara Brandolini, Ida de Bonis, Vincenzo Ferone, Bruno Volzone","doi":"10.3233/asy-231860","DOIUrl":null,"url":null,"abstract":"We provide symmetrization results in the form of mass concentration comparisons for fractional singular elliptic equations in bounded domains, coupled with homogeneous external Dirichlet conditions. Two types of comparison results are presented, depending on the summability of the right-hand side of the equation. The maximum principle arguments employed in the core of the proofs of the main results offer a nonstandard, flexible alternative to the ones described in (Arch. Ration. Mech. Anal. 239 (2021) 1733–1770, Theorem 31). Some interesting consequences are L p regularity results and nonlocal energy estimates for solutions.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":"78 22","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison results for a nonlocal singular elliptic problem\",\"authors\":\"Barbara Brandolini, Ida de Bonis, Vincenzo Ferone, Bruno Volzone\",\"doi\":\"10.3233/asy-231860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide symmetrization results in the form of mass concentration comparisons for fractional singular elliptic equations in bounded domains, coupled with homogeneous external Dirichlet conditions. Two types of comparison results are presented, depending on the summability of the right-hand side of the equation. The maximum principle arguments employed in the core of the proofs of the main results offer a nonstandard, flexible alternative to the ones described in (Arch. Ration. Mech. Anal. 239 (2021) 1733–1770, Theorem 31). Some interesting consequences are L p regularity results and nonlocal energy estimates for solutions.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":\"78 22\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-231860\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/asy-231860","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们以质量浓度比较的形式给出了分数阶奇异椭圆方程在有界域中的对称结果,并与齐次外部狄利克雷条件耦合。根据方程右侧的可和性,给出了两种类型的比较结果。在主要结果的证明的核心中使用的最大原理论证提供了一种非标准的、灵活的替代方法。配给。动力机械。肛门239(2021)1733-1770,定理31)。一些有趣的结果是L - p正则性结果和解的非局部能量估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison results for a nonlocal singular elliptic problem
We provide symmetrization results in the form of mass concentration comparisons for fractional singular elliptic equations in bounded domains, coupled with homogeneous external Dirichlet conditions. Two types of comparison results are presented, depending on the summability of the right-hand side of the equation. The maximum principle arguments employed in the core of the proofs of the main results offer a nonstandard, flexible alternative to the ones described in (Arch. Ration. Mech. Anal. 239 (2021) 1733–1770, Theorem 31). Some interesting consequences are L p regularity results and nonlocal energy estimates for solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信