关于u统计遍历定理的几个注释

IF 0.8 4区 数学 Q2 MATHEMATICS
Herold G. Dehling, Davide Giraudo, Dalibor Volny
{"title":"关于u统计遍历定理的几个注释","authors":"Herold G. Dehling, Davide Giraudo, Dalibor Volny","doi":"10.5802/crmath.494","DOIUrl":null,"url":null,"abstract":"In this note, we investigate the convergence of a U-statistic of order two having stationary ergodic data. We will find sufficient conditions for the almost sure and L 1 convergence and present some counter-examples showing that the U-statistic itself might fail to converge: centering is needed as well as finiteness of sup j≥2 𝔼[|h(X 1 ,X j )|].","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":"83 7","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some remarks on the ergodic theorem for U-statistics\",\"authors\":\"Herold G. Dehling, Davide Giraudo, Dalibor Volny\",\"doi\":\"10.5802/crmath.494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we investigate the convergence of a U-statistic of order two having stationary ergodic data. We will find sufficient conditions for the almost sure and L 1 convergence and present some counter-examples showing that the U-statistic itself might fail to converge: centering is needed as well as finiteness of sup j≥2 𝔼[|h(X 1 ,X j )|].\",\"PeriodicalId\":10620,\"journal\":{\"name\":\"Comptes Rendus Mathematique\",\"volume\":\"83 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.494\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.494","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究具有平稳遍历数据的二阶u统计量的收敛性。我们将找到几乎确定和L 1收敛的充分条件,并给出一些反例,表明u统计量本身可能无法收敛:需要定心以及sup j≥2的有限性[|h(x1,X j)|]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some remarks on the ergodic theorem for U-statistics
In this note, we investigate the convergence of a U-statistic of order two having stationary ergodic data. We will find sufficient conditions for the almost sure and L 1 convergence and present some counter-examples showing that the U-statistic itself might fail to converge: centering is needed as well as finiteness of sup j≥2 𝔼[|h(X 1 ,X j )|].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
115
审稿时长
16.6 weeks
期刊介绍: The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English. The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信