具有相关数据的线性回归的经验风险最小化性能

IF 1 4区 经济学 Q3 ECONOMICS
Christian Brownlees, Gu{dh}mundur Stef'an Gu{dh}mundsson
{"title":"具有相关数据的线性回归的经验风险最小化性能","authors":"Christian Brownlees, Gu{dh}mundur Stef'an Gu{dh}mundsson","doi":"10.1017/s0266466623000348","DOIUrl":null,"url":null,"abstract":"This paper establishes bounds on the performance of empirical risk minimization for large-dimensional linear regression. We generalize existing results by allowing the data to be dependent and heavy-tailed. The analysis covers both the cases of identically and heterogeneously distributed observations. Our analysis is nonparametric in the sense that the relationship between the regressand and the regressors is not specified. The main results of this paper show that the empirical risk minimizer achieves the optimal performance (up to a logarithmic factor) in a dependent data setting.","PeriodicalId":49275,"journal":{"name":"Econometric Theory","volume":"84 3","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PERFORMANCE OF EMPIRICAL RISK MINIMIZATION FOR LINEAR REGRESSION WITH DEPENDENT DATA\",\"authors\":\"Christian Brownlees, Gu{dh}mundur Stef'an Gu{dh}mundsson\",\"doi\":\"10.1017/s0266466623000348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper establishes bounds on the performance of empirical risk minimization for large-dimensional linear regression. We generalize existing results by allowing the data to be dependent and heavy-tailed. The analysis covers both the cases of identically and heterogeneously distributed observations. Our analysis is nonparametric in the sense that the relationship between the regressand and the regressors is not specified. The main results of this paper show that the empirical risk minimizer achieves the optimal performance (up to a logarithmic factor) in a dependent data setting.\",\"PeriodicalId\":49275,\"journal\":{\"name\":\"Econometric Theory\",\"volume\":\"84 3\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0266466623000348\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0266466623000348","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了大维线性回归的经验风险最小化性能的界。我们通过允许数据是依赖的和重尾的来推广现有的结果。该分析涵盖了相同和非均匀分布观测值的情况。我们的分析是非参数的,因为回归量和回归量之间的关系没有指定。本文的主要结果表明,经验风险最小化器在依赖数据设置中实现了最佳性能(高达对数因子)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PERFORMANCE OF EMPIRICAL RISK MINIMIZATION FOR LINEAR REGRESSION WITH DEPENDENT DATA
This paper establishes bounds on the performance of empirical risk minimization for large-dimensional linear regression. We generalize existing results by allowing the data to be dependent and heavy-tailed. The analysis covers both the cases of identically and heterogeneously distributed observations. Our analysis is nonparametric in the sense that the relationship between the regressand and the regressors is not specified. The main results of this paper show that the empirical risk minimizer achieves the optimal performance (up to a logarithmic factor) in a dependent data setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometric Theory
Econometric Theory MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
1.90
自引率
0.00%
发文量
52
审稿时长
>12 weeks
期刊介绍: Since its inception, Econometric Theory has aimed to endow econometrics with an innovative journal dedicated to advance theoretical research in econometrics. It provides a centralized professional outlet for original theoretical contributions in all of the major areas of econometrics, and all fields of research in econometric theory fall within the scope of ET. In addition, ET fosters the multidisciplinary features of econometrics that extend beyond economics. Particularly welcome are articles that promote original econometric research in relation to mathematical finance, stochastic processes, statistics, and probability theory, as well as computationally intensive areas of economics such as modern industrial organization and dynamic macroeconomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信