映射类组的双Johnson过滤

IF 0.5 3区 数学 Q3 MATHEMATICS
Kazuo Habiro, Anderson Vera
{"title":"映射类组的双Johnson过滤","authors":"Kazuo Habiro, Anderson Vera","doi":"10.1142/s1793525323500401","DOIUrl":null,"url":null,"abstract":"We first develop a general theory of Johnson filtrations and Johnson homomorphisms for a group $G$ acting on another group $K$ equipped with a filtration indexed by a good ordered commutative monoid. Then, specializing it to the case where the monoid is the additive monoid $\\mathbb{N}^2$ of pairs on nonnegative integers, we obtain a theory of double Johnson filtrations and homomorphisms. We apply this theory to the mapping class group $\\mathcal{M}$ of a surface $\\Sigma_{g,1}$ with one boundary component, equipped with the normal subgroups $\\bar{X}$, $\\bar{Y}$ of $\\pi_1(\\Sigma_{g,1})$ associated to a standard Heegaard splitting of the $3$-sphere. We also consider the case where the group $G$ is the automorphism group of a free group.","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double Johnson Filtrations for Mapping Class Groups\",\"authors\":\"Kazuo Habiro, Anderson Vera\",\"doi\":\"10.1142/s1793525323500401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We first develop a general theory of Johnson filtrations and Johnson homomorphisms for a group $G$ acting on another group $K$ equipped with a filtration indexed by a good ordered commutative monoid. Then, specializing it to the case where the monoid is the additive monoid $\\\\mathbb{N}^2$ of pairs on nonnegative integers, we obtain a theory of double Johnson filtrations and homomorphisms. We apply this theory to the mapping class group $\\\\mathcal{M}$ of a surface $\\\\Sigma_{g,1}$ with one boundary component, equipped with the normal subgroups $\\\\bar{X}$, $\\\\bar{Y}$ of $\\\\pi_1(\\\\Sigma_{g,1})$ associated to a standard Heegaard splitting of the $3$-sphere. We also consider the case where the group $G$ is the automorphism group of a free group.\",\"PeriodicalId\":49151,\"journal\":{\"name\":\"Journal of Topology and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793525323500401\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793525323500401","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们首先发展了一类群$G$作用于另一类群$K$的Johnson过滤和Johnson同态的一般理论。然后,将其专一化到非负整数上的单群是对的加性单群$\mathbb{N}^2$的情况下,得到了双Johnson过滤和同态的理论。我们将这一理论应用于具有一个边界分量的曲面$\Sigma_{g,1}$的映射类群$\mathcal{M}$,并配备了与$3$ -球体的标准heegard分裂相关的$\pi_1(\Sigma_{g,1})$的正常子群$\bar{X}$, $\bar{Y}$。我们还考虑了群$G$是自由群的自同构群的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double Johnson Filtrations for Mapping Class Groups
We first develop a general theory of Johnson filtrations and Johnson homomorphisms for a group $G$ acting on another group $K$ equipped with a filtration indexed by a good ordered commutative monoid. Then, specializing it to the case where the monoid is the additive monoid $\mathbb{N}^2$ of pairs on nonnegative integers, we obtain a theory of double Johnson filtrations and homomorphisms. We apply this theory to the mapping class group $\mathcal{M}$ of a surface $\Sigma_{g,1}$ with one boundary component, equipped with the normal subgroups $\bar{X}$, $\bar{Y}$ of $\pi_1(\Sigma_{g,1})$ associated to a standard Heegaard splitting of the $3$-sphere. We also consider the case where the group $G$ is the automorphism group of a free group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信