{"title":"具有外包解密功能的健壮、可撤销、向前和向后自适应安全的基于属性的加密1","authors":"Anis Bkakria","doi":"10.3233/jcs-220129","DOIUrl":null,"url":null,"abstract":"Attribute based encryption (ABE) is a cryptographic technique allowing fine-grained access control by enabling one-to-many encryption. Existing ABE constructions suffer from at least one of the following limitations. First, single point of failure on security meaning that, once an authority is compromised, an adversary can either easily break the confidentiality of the encrypted data or effortlessly prevent legitimate users from accessing data; second, the lack of user and/or attribute revocation mechanism achieving forward and backward secrecy; third, a heavy computation workload is placed on data user; last but not least, the lack of adaptive security in standard models. In this paper, we propose the first single-point-of-failure free multi-authority ciphertext-policy ABE that simultaneously (1) ensures robustness for both decryption key issuing and access revocation while achieving both backward and forward secrecy; (2) enables outsourced decryption to reduce the decryption overhead for data users that have limited computational resources; and (3) achieves adaptive (full) security in standard models. The provided theoretical complexity comparison as well as the conducted experiments show that our construction introduces linear storage and computation overheads that occurs only once during its setup phase, which we believe to be a reasonable price to pay to achieve all previous features.","PeriodicalId":46074,"journal":{"name":"Journal of Computer Security","volume":"78 4","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust, revocable, forward and backward adaptively secure attribute-based encryption with outsourced decryption1\",\"authors\":\"Anis Bkakria\",\"doi\":\"10.3233/jcs-220129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attribute based encryption (ABE) is a cryptographic technique allowing fine-grained access control by enabling one-to-many encryption. Existing ABE constructions suffer from at least one of the following limitations. First, single point of failure on security meaning that, once an authority is compromised, an adversary can either easily break the confidentiality of the encrypted data or effortlessly prevent legitimate users from accessing data; second, the lack of user and/or attribute revocation mechanism achieving forward and backward secrecy; third, a heavy computation workload is placed on data user; last but not least, the lack of adaptive security in standard models. In this paper, we propose the first single-point-of-failure free multi-authority ciphertext-policy ABE that simultaneously (1) ensures robustness for both decryption key issuing and access revocation while achieving both backward and forward secrecy; (2) enables outsourced decryption to reduce the decryption overhead for data users that have limited computational resources; and (3) achieves adaptive (full) security in standard models. The provided theoretical complexity comparison as well as the conducted experiments show that our construction introduces linear storage and computation overheads that occurs only once during its setup phase, which we believe to be a reasonable price to pay to achieve all previous features.\",\"PeriodicalId\":46074,\"journal\":{\"name\":\"Journal of Computer Security\",\"volume\":\"78 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jcs-220129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcs-220129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Robust, revocable, forward and backward adaptively secure attribute-based encryption with outsourced decryption1
Attribute based encryption (ABE) is a cryptographic technique allowing fine-grained access control by enabling one-to-many encryption. Existing ABE constructions suffer from at least one of the following limitations. First, single point of failure on security meaning that, once an authority is compromised, an adversary can either easily break the confidentiality of the encrypted data or effortlessly prevent legitimate users from accessing data; second, the lack of user and/or attribute revocation mechanism achieving forward and backward secrecy; third, a heavy computation workload is placed on data user; last but not least, the lack of adaptive security in standard models. In this paper, we propose the first single-point-of-failure free multi-authority ciphertext-policy ABE that simultaneously (1) ensures robustness for both decryption key issuing and access revocation while achieving both backward and forward secrecy; (2) enables outsourced decryption to reduce the decryption overhead for data users that have limited computational resources; and (3) achieves adaptive (full) security in standard models. The provided theoretical complexity comparison as well as the conducted experiments show that our construction introduces linear storage and computation overheads that occurs only once during its setup phase, which we believe to be a reasonable price to pay to achieve all previous features.
期刊介绍:
The Journal of Computer Security presents research and development results of lasting significance in the theory, design, implementation, analysis, and application of secure computer systems and networks. It will also provide a forum for ideas about the meaning and implications of security and privacy, particularly those with important consequences for the technical community. The Journal provides an opportunity to publish articles of greater depth and length than is possible in the proceedings of various existing conferences, while addressing an audience of researchers in computer security who can be assumed to have a more specialized background than the readership of other archival publications.