Elaine Guevara, Shyamalika Gopalan, Dashiell J Massey, Mayowa Adegboyega, Wen Zhou, Alma Solis, Alisha D Anaya, Steven E Churchill, Joseph Feldblum, Richard Lawler
{"title":"正确的做法:教授本科生生物学以削弱种族本质论","authors":"Elaine Guevara, Shyamalika Gopalan, Dashiell J Massey, Mayowa Adegboyega, Wen Zhou, Alma Solis, Alisha D Anaya, Steven E Churchill, Joseph Feldblum, Richard Lawler","doi":"10.1093/biomethods/bpad032","DOIUrl":null,"url":null,"abstract":"Abstract How we teach human genetics matters for social equity. The biology curriculum appears to be a crucial locus of intervention for either reinforcing or undermining students’ racial essentialist views. The Mendelian genetic models dominating textbooks, particularly in combination with racially inflected language sometimes used when teaching about monogenic disorders, can increase middle and high school students’ racial essentialism and opposition to policies to increase equity. These findings are of particular concern given the increasing spread of racist misinformation online and misappropriation of human genomics research by white supremacists, who take advantage of low levels of genetics literacy in the general public. Encouragingly, however, teaching updated information about the geographic distribution of human genetic variation and the complex, multifactorial basis of most human traits, reduces students’ endorsement of racial essentialism. The genetics curriculum is therefore a key tool in combating misinformation and scientific racism. Here, we describe a framework and example teaching materials for teaching students key concepts in genetics, human evolutionary history, and human phenotypic variation at the undergraduate level. This framework can be flexibly applied in biology and anthropology classes and adjusted based on time availability. Our goal is to provide undergraduate-level instructors with varying levels of expertise with a set of evidence-informed tools for teaching human genetics to combat scientific racism, including an evolving set of instructional resources, as well as learning goals and pedagogical approaches instructors can apply when teaching genetics. Resources can be found at https://noto.li/YIlhZ5. Additionally, we hope to generate conversation about integrating modern genetics into the undergraduate curriculum, in light of recent findings about the risks and opportunities associated with teaching genetics.","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"6 9","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Getting it right: teaching undergraduate biology to undermine racial essentialism\",\"authors\":\"Elaine Guevara, Shyamalika Gopalan, Dashiell J Massey, Mayowa Adegboyega, Wen Zhou, Alma Solis, Alisha D Anaya, Steven E Churchill, Joseph Feldblum, Richard Lawler\",\"doi\":\"10.1093/biomethods/bpad032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract How we teach human genetics matters for social equity. The biology curriculum appears to be a crucial locus of intervention for either reinforcing or undermining students’ racial essentialist views. The Mendelian genetic models dominating textbooks, particularly in combination with racially inflected language sometimes used when teaching about monogenic disorders, can increase middle and high school students’ racial essentialism and opposition to policies to increase equity. These findings are of particular concern given the increasing spread of racist misinformation online and misappropriation of human genomics research by white supremacists, who take advantage of low levels of genetics literacy in the general public. Encouragingly, however, teaching updated information about the geographic distribution of human genetic variation and the complex, multifactorial basis of most human traits, reduces students’ endorsement of racial essentialism. The genetics curriculum is therefore a key tool in combating misinformation and scientific racism. Here, we describe a framework and example teaching materials for teaching students key concepts in genetics, human evolutionary history, and human phenotypic variation at the undergraduate level. This framework can be flexibly applied in biology and anthropology classes and adjusted based on time availability. Our goal is to provide undergraduate-level instructors with varying levels of expertise with a set of evidence-informed tools for teaching human genetics to combat scientific racism, including an evolving set of instructional resources, as well as learning goals and pedagogical approaches instructors can apply when teaching genetics. Resources can be found at https://noto.li/YIlhZ5. Additionally, we hope to generate conversation about integrating modern genetics into the undergraduate curriculum, in light of recent findings about the risks and opportunities associated with teaching genetics.\",\"PeriodicalId\":36528,\"journal\":{\"name\":\"Biology Methods and Protocols\",\"volume\":\"6 9\",\"pages\":\"0\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Methods and Protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/biomethods/bpad032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomethods/bpad032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Getting it right: teaching undergraduate biology to undermine racial essentialism
Abstract How we teach human genetics matters for social equity. The biology curriculum appears to be a crucial locus of intervention for either reinforcing or undermining students’ racial essentialist views. The Mendelian genetic models dominating textbooks, particularly in combination with racially inflected language sometimes used when teaching about monogenic disorders, can increase middle and high school students’ racial essentialism and opposition to policies to increase equity. These findings are of particular concern given the increasing spread of racist misinformation online and misappropriation of human genomics research by white supremacists, who take advantage of low levels of genetics literacy in the general public. Encouragingly, however, teaching updated information about the geographic distribution of human genetic variation and the complex, multifactorial basis of most human traits, reduces students’ endorsement of racial essentialism. The genetics curriculum is therefore a key tool in combating misinformation and scientific racism. Here, we describe a framework and example teaching materials for teaching students key concepts in genetics, human evolutionary history, and human phenotypic variation at the undergraduate level. This framework can be flexibly applied in biology and anthropology classes and adjusted based on time availability. Our goal is to provide undergraduate-level instructors with varying levels of expertise with a set of evidence-informed tools for teaching human genetics to combat scientific racism, including an evolving set of instructional resources, as well as learning goals and pedagogical approaches instructors can apply when teaching genetics. Resources can be found at https://noto.li/YIlhZ5. Additionally, we hope to generate conversation about integrating modern genetics into the undergraduate curriculum, in light of recent findings about the risks and opportunities associated with teaching genetics.