自组织拓扑多层感知器:一种改进极端污染值预测的混合方法

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Stats Pub Date : 2023-11-11 DOI:10.3390/stats6040077
Javier Linkolk López-Gonzales, Ana María Gómez Lamus, Romina Torres, Paulo Canas Rodrigues, Rodrigo Salas
{"title":"自组织拓扑多层感知器:一种改进极端污染值预测的混合方法","authors":"Javier Linkolk López-Gonzales, Ana María Gómez Lamus, Romina Torres, Paulo Canas Rodrigues, Rodrigo Salas","doi":"10.3390/stats6040077","DOIUrl":null,"url":null,"abstract":"Forecasting air pollutant levels is essential in regulatory plans focused on controlling and mitigating air pollutants, such as particulate matter. Focusing the forecast on air pollution peaks is challenging and complex since the pollutant time series behavior is not regular and is affected by several environmental and urban factors. In this study, we propose a new hybrid method based on artificial neural networks to forecast daily extreme events of PM2.5 pollution concentration. The hybrid method combines self-organizing maps to identify temporal patterns of excessive daily pollution found at different monitoring stations, with a set of multilayer perceptron to forecast extreme values of PM2.5 for each cluster. The proposed model was applied to analyze five-year pollution data obtained from nine weather stations in the metropolitan area of Santiago, Chile. Simulation results show that the hybrid method improves performance metrics when forecasting daily extreme values of PM2.5.","PeriodicalId":93142,"journal":{"name":"Stats","volume":"39 7","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Organizing Topological Multilayer Perceptron: A Hybrid Method to Improve the Forecasting of Extreme Pollution Values\",\"authors\":\"Javier Linkolk López-Gonzales, Ana María Gómez Lamus, Romina Torres, Paulo Canas Rodrigues, Rodrigo Salas\",\"doi\":\"10.3390/stats6040077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forecasting air pollutant levels is essential in regulatory plans focused on controlling and mitigating air pollutants, such as particulate matter. Focusing the forecast on air pollution peaks is challenging and complex since the pollutant time series behavior is not regular and is affected by several environmental and urban factors. In this study, we propose a new hybrid method based on artificial neural networks to forecast daily extreme events of PM2.5 pollution concentration. The hybrid method combines self-organizing maps to identify temporal patterns of excessive daily pollution found at different monitoring stations, with a set of multilayer perceptron to forecast extreme values of PM2.5 for each cluster. The proposed model was applied to analyze five-year pollution data obtained from nine weather stations in the metropolitan area of Santiago, Chile. Simulation results show that the hybrid method improves performance metrics when forecasting daily extreme values of PM2.5.\",\"PeriodicalId\":93142,\"journal\":{\"name\":\"Stats\",\"volume\":\"39 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stats\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/stats6040077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats6040077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

预测空气污染物水平对于以控制和减轻空气污染物(如颗粒物质)为重点的管理计划至关重要。由于污染物的时间序列行为不具有规律性,并且受多种环境和城市因素的影响,因此集中预测大气污染峰值是一项具有挑战性和复杂性的工作。在本研究中,我们提出了一种新的基于人工神经网络的混合方法来预测PM2.5污染浓度的日极端事件。这种混合方法结合了自组织图来识别不同监测站发现的每日过度污染的时间模式,并使用一套多层感知器来预测每个集群的PM2.5极值。提出的模型被应用于分析从智利圣地亚哥市区的九个气象站获得的五年污染数据。仿真结果表明,混合方法提高了PM2.5日极值预测的性能指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Organizing Topological Multilayer Perceptron: A Hybrid Method to Improve the Forecasting of Extreme Pollution Values
Forecasting air pollutant levels is essential in regulatory plans focused on controlling and mitigating air pollutants, such as particulate matter. Focusing the forecast on air pollution peaks is challenging and complex since the pollutant time series behavior is not regular and is affected by several environmental and urban factors. In this study, we propose a new hybrid method based on artificial neural networks to forecast daily extreme events of PM2.5 pollution concentration. The hybrid method combines self-organizing maps to identify temporal patterns of excessive daily pollution found at different monitoring stations, with a set of multilayer perceptron to forecast extreme values of PM2.5 for each cluster. The proposed model was applied to analyze five-year pollution data obtained from nine weather stations in the metropolitan area of Santiago, Chile. Simulation results show that the hybrid method improves performance metrics when forecasting daily extreme values of PM2.5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信