{"title":"基于有理分形插值信息的盲图像补图模型","authors":"ZUN LI, AIMIN CHEN, XIAOMENG SHEN, TONGJUN MIA","doi":"10.1142/s0218348x23501293","DOIUrl":null,"url":null,"abstract":"Aiming to solve the problem of blind image inpainting, this study proposed a blind image inpainting model integrated with rational fractal interpolation information. First, wavelet decomposition and closed operations were adopted to obtain masks and transform blind inpainting into non-blind inpainting. Then, on the basis of similar structural groups, rational fractal interpolation functions were introduced to complete the restoration. On the one hand, this model can sufficiently express the texture features of the image with high fidelity. On the other hand, it can better represent the structural features of the image, avoid serrated edges, enhance the restoration effect, and approximate the original image. The experimental results show that the restoration effect of this model can reserve texture details and ensure edges without distortion, possessing great practical application value.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A BLIND IMAGE INPAINTING MODEL INTEGRATED WITH RATIONAL FRACTAL INTERPOLATION INFORMATION\",\"authors\":\"ZUN LI, AIMIN CHEN, XIAOMENG SHEN, TONGJUN MIA\",\"doi\":\"10.1142/s0218348x23501293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming to solve the problem of blind image inpainting, this study proposed a blind image inpainting model integrated with rational fractal interpolation information. First, wavelet decomposition and closed operations were adopted to obtain masks and transform blind inpainting into non-blind inpainting. Then, on the basis of similar structural groups, rational fractal interpolation functions were introduced to complete the restoration. On the one hand, this model can sufficiently express the texture features of the image with high fidelity. On the other hand, it can better represent the structural features of the image, avoid serrated edges, enhance the restoration effect, and approximate the original image. The experimental results show that the restoration effect of this model can reserve texture details and ensure edges without distortion, possessing great practical application value.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x23501293\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x23501293","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A BLIND IMAGE INPAINTING MODEL INTEGRATED WITH RATIONAL FRACTAL INTERPOLATION INFORMATION
Aiming to solve the problem of blind image inpainting, this study proposed a blind image inpainting model integrated with rational fractal interpolation information. First, wavelet decomposition and closed operations were adopted to obtain masks and transform blind inpainting into non-blind inpainting. Then, on the basis of similar structural groups, rational fractal interpolation functions were introduced to complete the restoration. On the one hand, this model can sufficiently express the texture features of the image with high fidelity. On the other hand, it can better represent the structural features of the image, avoid serrated edges, enhance the restoration effect, and approximate the original image. The experimental results show that the restoration effect of this model can reserve texture details and ensure edges without distortion, possessing great practical application value.