D. Suleimenova, Ye. Tashenov, Mannix P. Balanay, B. Baptayev
{"title":"揭示MnxCo3-xS4电催化剂在染料敏化太阳能电池中还原三碘化物的潜力","authors":"D. Suleimenova, Ye. Tashenov, Mannix P. Balanay, B. Baptayev","doi":"10.31489/2023ph3/58-64","DOIUrl":null,"url":null,"abstract":"The development of a low-cost and high-efficiency Pt-free counter electrode is an important goal to improve the performance of dye-sensitized solar cells. In this study, we successfully synthesized a MnxCo3-xS4-based counter electrode by a facile solvothermal synthesis technique. The electrocatalyst was directly deposited on a fluorine doped titanium oxide (FTO) coated glass substrate. Various characterization techniques such as Xray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy were employed to analyze the obtained MnxCo3-xS4 counter electrode material. The photovoltaic measurements performed on the dye-sensitized solar cells showed a remarkable improvement in energy conversion efficiency with the MnxCo3-xS4counter electrode (8.60 %) compared to the conventional Pt (8.11 %). Moreover, the MnxCo3-xS4counter electrode exhibited excellent stability, further highlighting its potential as an efficient and durable alternative to Pt in dye-sensitized solar cells. Overall, our results contribute to the further development of Pt-free counter electrode materials for sustainable solar energy applications.","PeriodicalId":29904,"journal":{"name":"Bulletin of the University of Karaganda-Physics","volume":"14 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Potential of MnxCo3–xS4 Electrocatalyst in Triiodide Reduction for Dye-sensitized Solar Cells\",\"authors\":\"D. Suleimenova, Ye. Tashenov, Mannix P. Balanay, B. Baptayev\",\"doi\":\"10.31489/2023ph3/58-64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of a low-cost and high-efficiency Pt-free counter electrode is an important goal to improve the performance of dye-sensitized solar cells. In this study, we successfully synthesized a MnxCo3-xS4-based counter electrode by a facile solvothermal synthesis technique. The electrocatalyst was directly deposited on a fluorine doped titanium oxide (FTO) coated glass substrate. Various characterization techniques such as Xray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy were employed to analyze the obtained MnxCo3-xS4 counter electrode material. The photovoltaic measurements performed on the dye-sensitized solar cells showed a remarkable improvement in energy conversion efficiency with the MnxCo3-xS4counter electrode (8.60 %) compared to the conventional Pt (8.11 %). Moreover, the MnxCo3-xS4counter electrode exhibited excellent stability, further highlighting its potential as an efficient and durable alternative to Pt in dye-sensitized solar cells. Overall, our results contribute to the further development of Pt-free counter electrode materials for sustainable solar energy applications.\",\"PeriodicalId\":29904,\"journal\":{\"name\":\"Bulletin of the University of Karaganda-Physics\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the University of Karaganda-Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2023ph3/58-64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the University of Karaganda-Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2023ph3/58-64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Unveiling the Potential of MnxCo3–xS4 Electrocatalyst in Triiodide Reduction for Dye-sensitized Solar Cells
The development of a low-cost and high-efficiency Pt-free counter electrode is an important goal to improve the performance of dye-sensitized solar cells. In this study, we successfully synthesized a MnxCo3-xS4-based counter electrode by a facile solvothermal synthesis technique. The electrocatalyst was directly deposited on a fluorine doped titanium oxide (FTO) coated glass substrate. Various characterization techniques such as Xray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy were employed to analyze the obtained MnxCo3-xS4 counter electrode material. The photovoltaic measurements performed on the dye-sensitized solar cells showed a remarkable improvement in energy conversion efficiency with the MnxCo3-xS4counter electrode (8.60 %) compared to the conventional Pt (8.11 %). Moreover, the MnxCo3-xS4counter electrode exhibited excellent stability, further highlighting its potential as an efficient and durable alternative to Pt in dye-sensitized solar cells. Overall, our results contribute to the further development of Pt-free counter electrode materials for sustainable solar energy applications.