支持机分类方法比较和对电动汽车情感分析的天真贝斯

Ni Wayan Ernawati, I Nyoman Satya Kumara, Widyadi Setiawan
{"title":"支持机分类方法比较和对电动汽车情感分析的天真贝斯","authors":"Ni Wayan Ernawati, I Nyoman Satya Kumara, Widyadi Setiawan","doi":"10.24843/spektrum.2023.v10.i03.p12","DOIUrl":null,"url":null,"abstract":"Electric vehicles are one of the solutions that can be used to deal with the problem of greenhouse gas emissions. Switching to electric vehicles can be an effective solution because electric vehicles have many advantages. However, the acceptance of electric vehicles in Indonesia depends on the opinions or sentiments given by the community. Sentiment analysis can provide a specific picture of how the sentiment or opinion given by the Indonesian people towards electric vehicles. The sentiment analysis process is carried out using the Python programming language. This research compares SVM and Naïve Bayes methods in sentiment analysis in terms of accuracy and time efficiency. A total of 717 data were used as test data and SVM correctly classified 150 negative data, 152 neutral data, and 277 positive data. Meanwhile, Naïve Bayes correctly classified 166 negative data, 143 neutral data, and 282 positive data. training time required for the SVM method is 37.42 seconds while Naïve Bayes is 0.10 seconds. Naïve Bayes is the best method in this study because of its high accuracy and fast training time.","PeriodicalId":30870,"journal":{"name":"Jurnal Ilmiah Spektrum","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PERBANDINGAN METODE KLASIFIKASI SUPPORT VECTOR MACHINE DAN NAÏVE BAYES PADA ANALISIS SENTIMEN KENDARAAN LISTRIK\",\"authors\":\"Ni Wayan Ernawati, I Nyoman Satya Kumara, Widyadi Setiawan\",\"doi\":\"10.24843/spektrum.2023.v10.i03.p12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electric vehicles are one of the solutions that can be used to deal with the problem of greenhouse gas emissions. Switching to electric vehicles can be an effective solution because electric vehicles have many advantages. However, the acceptance of electric vehicles in Indonesia depends on the opinions or sentiments given by the community. Sentiment analysis can provide a specific picture of how the sentiment or opinion given by the Indonesian people towards electric vehicles. The sentiment analysis process is carried out using the Python programming language. This research compares SVM and Naïve Bayes methods in sentiment analysis in terms of accuracy and time efficiency. A total of 717 data were used as test data and SVM correctly classified 150 negative data, 152 neutral data, and 277 positive data. Meanwhile, Naïve Bayes correctly classified 166 negative data, 143 neutral data, and 282 positive data. training time required for the SVM method is 37.42 seconds while Naïve Bayes is 0.10 seconds. Naïve Bayes is the best method in this study because of its high accuracy and fast training time.\",\"PeriodicalId\":30870,\"journal\":{\"name\":\"Jurnal Ilmiah Spektrum\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Ilmiah Spektrum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24843/spektrum.2023.v10.i03.p12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmiah Spektrum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24843/spektrum.2023.v10.i03.p12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电动汽车是解决温室气体排放问题的解决方案之一。改用电动汽车可能是一个有效的解决方案,因为电动汽车有很多优点。然而,印尼对电动汽车的接受程度取决于社区的意见或情绪。情绪分析可以提供印尼人对电动汽车的情绪或意见的具体情况。情感分析过程使用Python编程语言进行。本研究比较了支持向量机和Naïve贝叶斯方法在情感分析中的准确率和时间效率。共使用717个数据作为测试数据,SVM正确分类了150个负数据、152个中性数据和277个正数据。同时Naïve贝叶斯正确分类了166个负面数据,143个中性数据,282个正面数据。SVM方法的训练时间为37.42秒,Naïve贝叶斯方法的训练时间为0.10秒。Naïve贝叶斯方法准确率高,训练时间快,是本研究中最好的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PERBANDINGAN METODE KLASIFIKASI SUPPORT VECTOR MACHINE DAN NAÏVE BAYES PADA ANALISIS SENTIMEN KENDARAAN LISTRIK
Electric vehicles are one of the solutions that can be used to deal with the problem of greenhouse gas emissions. Switching to electric vehicles can be an effective solution because electric vehicles have many advantages. However, the acceptance of electric vehicles in Indonesia depends on the opinions or sentiments given by the community. Sentiment analysis can provide a specific picture of how the sentiment or opinion given by the Indonesian people towards electric vehicles. The sentiment analysis process is carried out using the Python programming language. This research compares SVM and Naïve Bayes methods in sentiment analysis in terms of accuracy and time efficiency. A total of 717 data were used as test data and SVM correctly classified 150 negative data, 152 neutral data, and 277 positive data. Meanwhile, Naïve Bayes correctly classified 166 negative data, 143 neutral data, and 282 positive data. training time required for the SVM method is 37.42 seconds while Naïve Bayes is 0.10 seconds. Naïve Bayes is the best method in this study because of its high accuracy and fast training time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信