不同排序集抽样方案下的非参数方差估计

IF 0.3 Q4 MULTIDISCIPLINARY SCIENCES
NAEEMA BEGUM, MUHAMMAD HANIF, USMAN SHAHZAD, NASIR ALI
{"title":"不同排序集抽样方案下的非参数方差估计","authors":"NAEEMA BEGUM, MUHAMMAD HANIF, USMAN SHAHZAD, NASIR ALI","doi":"10.46939/j.sci.arts-23.3-a01","DOIUrl":null,"url":null,"abstract":"Estimation of variance is a commonly discussed topic under simple random sampling (SRS) scheme. The current article deals the issue of variance estimation utilizing supplementary information with the nonparametric approach under different ranked set sampling (RSS) schemes. We propose a class of nonparametric variance estimators utilizing kernel regression [1] with different bandwidths (Plug-in and Cross-validation), under RSS schemes. Simulation study is provided utilizing diverse data sets. The comparison of simulation results has been made between the members of the proposed class with respect to the unbiased variance estimator.","PeriodicalId":54169,"journal":{"name":"Journal of Science and Arts","volume":"22 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VARIANCE ESTIMATORS USING NON-PARAMETRIC APPROACH UNDER DIFFERENT RANKED SET SAMPLING SCHEMES\",\"authors\":\"NAEEMA BEGUM, MUHAMMAD HANIF, USMAN SHAHZAD, NASIR ALI\",\"doi\":\"10.46939/j.sci.arts-23.3-a01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of variance is a commonly discussed topic under simple random sampling (SRS) scheme. The current article deals the issue of variance estimation utilizing supplementary information with the nonparametric approach under different ranked set sampling (RSS) schemes. We propose a class of nonparametric variance estimators utilizing kernel regression [1] with different bandwidths (Plug-in and Cross-validation), under RSS schemes. Simulation study is provided utilizing diverse data sets. The comparison of simulation results has been made between the members of the proposed class with respect to the unbiased variance estimator.\",\"PeriodicalId\":54169,\"journal\":{\"name\":\"Journal of Science and Arts\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science and Arts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46939/j.sci.arts-23.3-a01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Arts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46939/j.sci.arts-23.3-a01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

方差估计是简单随机抽样(SRS)方案下经常讨论的问题。本文研究了在不同排序集抽样(RSS)方案下,利用补充信息和非参数方法进行方差估计的问题。在RSS方案下,我们提出了一类利用不同带宽(插件和交叉验证)的核回归[1]的非参数方差估计器。利用不同的数据集进行了模拟研究。在无偏方差估计方面,对所提出的类的模拟结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VARIANCE ESTIMATORS USING NON-PARAMETRIC APPROACH UNDER DIFFERENT RANKED SET SAMPLING SCHEMES
Estimation of variance is a commonly discussed topic under simple random sampling (SRS) scheme. The current article deals the issue of variance estimation utilizing supplementary information with the nonparametric approach under different ranked set sampling (RSS) schemes. We propose a class of nonparametric variance estimators utilizing kernel regression [1] with different bandwidths (Plug-in and Cross-validation), under RSS schemes. Simulation study is provided utilizing diverse data sets. The comparison of simulation results has been made between the members of the proposed class with respect to the unbiased variance estimator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Science and Arts
Journal of Science and Arts MULTIDISCIPLINARY SCIENCES-
自引率
25.00%
发文量
57
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信