三次域阵列上MHD流动的稳定有限元解

IF 0.7 Q2 MATHEMATICS
Selçuk Han AYDIN
{"title":"三次域阵列上MHD流动的稳定有限元解","authors":"Selçuk Han AYDIN","doi":"10.31801/cfsuasmas.1202192","DOIUrl":null,"url":null,"abstract":"In this study, 3D magnetohydrodynamic (MHD) equations are considered in array of cubic domains having insulated external boundaries separated by conducting thin walls. In order to obtain stable solutions, stabilized version of the Galerkin finite element method is used as a numerical scheme. Different problem parameters and configurations are tested in order to visualize the accuracy and efficiency of the proposed algorithm. Obtained solutions are visualized as contour lines of 2D slices taken from the obtained 3D domain solutions.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":"13 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilized FEM solution of MHD flow over array of cubic domains\",\"authors\":\"Selçuk Han AYDIN\",\"doi\":\"10.31801/cfsuasmas.1202192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, 3D magnetohydrodynamic (MHD) equations are considered in array of cubic domains having insulated external boundaries separated by conducting thin walls. In order to obtain stable solutions, stabilized version of the Galerkin finite element method is used as a numerical scheme. Different problem parameters and configurations are tested in order to visualize the accuracy and efficiency of the proposed algorithm. Obtained solutions are visualized as contour lines of 2D slices taken from the obtained 3D domain solutions.\",\"PeriodicalId\":44692,\"journal\":{\"name\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31801/cfsuasmas.1202192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1202192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,三维磁流体动力学(MHD)方程被考虑在具有绝缘外部边界的立方域阵列中,这些边界由导电薄壁分开。为了得到稳定解,采用稳定版伽辽金有限元法作为数值格式。对不同的问题参数和配置进行了测试,以显示所提出算法的准确性和效率。将得到的解可视化为从得到的三维域解中提取的二维切片的等高线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilized FEM solution of MHD flow over array of cubic domains
In this study, 3D magnetohydrodynamic (MHD) equations are considered in array of cubic domains having insulated external boundaries separated by conducting thin walls. In order to obtain stable solutions, stabilized version of the Galerkin finite element method is used as a numerical scheme. Different problem parameters and configurations are tested in order to visualize the accuracy and efficiency of the proposed algorithm. Obtained solutions are visualized as contour lines of 2D slices taken from the obtained 3D domain solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信