{"title":"后倾旋翼机叶片的制造、测试和三维综合分析","authors":"James Sutherland, Anubhav Datta","doi":"10.4050/jahs.68.012002","DOIUrl":null,"url":null,"abstract":"This paper covers the design, fabrication, testing, and modeling of a family of Froude-scale tiltrotor blades. They are designed with the objective of gaining a fundamental understanding of the impact of a swept tip on tiltrotor whirl flutter. The goal of this paper is to describe the development of the blades needed for this purpose. The rotor is three bladed with a diameter of 4.75 ft. The blades have a VR-7 profile, chord of 3.15 inches, and linear twist of –37° per span. The swept-tip blades have a sweep of 20° starting at 80% R . The blade properties are loosely based on the XV-15 design. A CATIA and Cubit-based high-fidelity three-dimensional (3D) finite element model is developed. It accurately represents the fabricated blade and is analyzed with X3D. Experiments in a vacuum chamber were carried out to demonstrate the structural integrity of the blades. Measured frequencies and strains were validated with X3D predictions proving the fidelity of the 3D model. Thus, even though the wind tunnel facilities were closed due to COVID-19, hover and forward flight calculations for the blade stress could be performed using the high-fidelity 3D structural model. The results prove the blades have sufficient structural integrity and stress margins to allow for wind tunnel testing.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"25 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fabrication, Testing, and 3D Comprehensive Analysis of Swept-Tip Tiltrotor Blades\",\"authors\":\"James Sutherland, Anubhav Datta\",\"doi\":\"10.4050/jahs.68.012002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper covers the design, fabrication, testing, and modeling of a family of Froude-scale tiltrotor blades. They are designed with the objective of gaining a fundamental understanding of the impact of a swept tip on tiltrotor whirl flutter. The goal of this paper is to describe the development of the blades needed for this purpose. The rotor is three bladed with a diameter of 4.75 ft. The blades have a VR-7 profile, chord of 3.15 inches, and linear twist of –37° per span. The swept-tip blades have a sweep of 20° starting at 80% R . The blade properties are loosely based on the XV-15 design. A CATIA and Cubit-based high-fidelity three-dimensional (3D) finite element model is developed. It accurately represents the fabricated blade and is analyzed with X3D. Experiments in a vacuum chamber were carried out to demonstrate the structural integrity of the blades. Measured frequencies and strains were validated with X3D predictions proving the fidelity of the 3D model. Thus, even though the wind tunnel facilities were closed due to COVID-19, hover and forward flight calculations for the blade stress could be performed using the high-fidelity 3D structural model. The results prove the blades have sufficient structural integrity and stress margins to allow for wind tunnel testing.\",\"PeriodicalId\":50017,\"journal\":{\"name\":\"Journal of the American Helicopter Society\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Helicopter Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4050/jahs.68.012002\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4050/jahs.68.012002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Fabrication, Testing, and 3D Comprehensive Analysis of Swept-Tip Tiltrotor Blades
This paper covers the design, fabrication, testing, and modeling of a family of Froude-scale tiltrotor blades. They are designed with the objective of gaining a fundamental understanding of the impact of a swept tip on tiltrotor whirl flutter. The goal of this paper is to describe the development of the blades needed for this purpose. The rotor is three bladed with a diameter of 4.75 ft. The blades have a VR-7 profile, chord of 3.15 inches, and linear twist of –37° per span. The swept-tip blades have a sweep of 20° starting at 80% R . The blade properties are loosely based on the XV-15 design. A CATIA and Cubit-based high-fidelity three-dimensional (3D) finite element model is developed. It accurately represents the fabricated blade and is analyzed with X3D. Experiments in a vacuum chamber were carried out to demonstrate the structural integrity of the blades. Measured frequencies and strains were validated with X3D predictions proving the fidelity of the 3D model. Thus, even though the wind tunnel facilities were closed due to COVID-19, hover and forward flight calculations for the blade stress could be performed using the high-fidelity 3D structural model. The results prove the blades have sufficient structural integrity and stress margins to allow for wind tunnel testing.
期刊介绍:
The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online.
The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine