具有相容导数的非线性Volterra方程

Q2 Mathematics
Nguyen Hoang TUAN, Nguyen Minh HAİ, Nguyen Duc PHUONG
{"title":"具有相容导数的非线性Volterra方程","authors":"Nguyen Hoang TUAN, Nguyen Minh HAİ, Nguyen Duc PHUONG","doi":"10.31197/atnaa.1287765","DOIUrl":null,"url":null,"abstract":"In this paper, we are interested to study a nonlinear Volterra equation with conformable deriva-
 tive. This kind of such equation has various applications, for example physics, mechanical
 engineering, heat conduction theory. First, we show that our problem have a mild soltution
 which exists locally in time. Then we prove that the convergence of the mild solution when the
 parameter tends to zero.","PeriodicalId":36619,"journal":{"name":"Advances in the Theory of Nonlinear Analysis and its Applications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the nonlinear Volterra equation with conformable derivative\",\"authors\":\"Nguyen Hoang TUAN, Nguyen Minh HAİ, Nguyen Duc PHUONG\",\"doi\":\"10.31197/atnaa.1287765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we are interested to study a nonlinear Volterra equation with conformable deriva-
 tive. This kind of such equation has various applications, for example physics, mechanical
 engineering, heat conduction theory. First, we show that our problem have a mild soltution
 which exists locally in time. Then we prove that the convergence of the mild solution when the
 parameter tends to zero.\",\"PeriodicalId\":36619,\"journal\":{\"name\":\"Advances in the Theory of Nonlinear Analysis and its Applications\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in the Theory of Nonlinear Analysis and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31197/atnaa.1287765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in the Theory of Nonlinear Analysis and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31197/atnaa.1287765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们感兴趣的是研究一类具有相容导数的非线性Volterra方程- 有效。这类方程有各种各样的应用,例如物理,力学 工程,热传导理论。首先,我们表明我们的问题有一个温和的解决方案 它在时间上局部存在。然后证明了当 参数趋于零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the nonlinear Volterra equation with conformable derivative
In this paper, we are interested to study a nonlinear Volterra equation with conformable deriva- tive. This kind of such equation has various applications, for example physics, mechanical engineering, heat conduction theory. First, we show that our problem have a mild soltution which exists locally in time. Then we prove that the convergence of the mild solution when the parameter tends to zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
37
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信