具有高斯测度的函数的最优数值积分与逼近

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Dinh Dũng, Van Kien Nguyen
{"title":"具有高斯测度的函数的最优数值积分与逼近","authors":"Dinh Dũng, Van Kien Nguyen","doi":"10.1093/imanum/drad051","DOIUrl":null,"url":null,"abstract":"Abstract We investigate the numerical approximation of integrals over $\\mathbb{R}^{d}$ equipped with the standard Gaussian measure $\\gamma $ for integrands belonging to the Gaussian-weighted Sobolev spaces $W^{\\alpha }_{p}(\\mathbb{R}^{d}, \\gamma )$ of mixed smoothness $\\alpha \\in \\mathbb{N}$ for $1 &amp;lt; p &amp;lt; \\infty $. We prove the asymptotic order of the convergence of optimal quadratures based on $n$ integration nodes and propose a novel method for constructing asymptotically optimal quadratures. As for related problems, we establish by a similar technique the asymptotic order of the linear, Kolmogorov and sampling $n$-widths in the Gaussian-weighted space $L_{q}(\\mathbb{R}^{d}, \\gamma )$ of the unit ball of $W^{\\alpha }_{p}(\\mathbb{R}^{d}, \\gamma )$ for $1 \\leq q &amp;lt; p &amp;lt; \\infty $ and $q=p=2$.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal numerical integration and approximation of functions on ℝ<i>d</i> equipped with Gaussian measure\",\"authors\":\"Dinh Dũng, Van Kien Nguyen\",\"doi\":\"10.1093/imanum/drad051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We investigate the numerical approximation of integrals over $\\\\mathbb{R}^{d}$ equipped with the standard Gaussian measure $\\\\gamma $ for integrands belonging to the Gaussian-weighted Sobolev spaces $W^{\\\\alpha }_{p}(\\\\mathbb{R}^{d}, \\\\gamma )$ of mixed smoothness $\\\\alpha \\\\in \\\\mathbb{N}$ for $1 &amp;lt; p &amp;lt; \\\\infty $. We prove the asymptotic order of the convergence of optimal quadratures based on $n$ integration nodes and propose a novel method for constructing asymptotically optimal quadratures. As for related problems, we establish by a similar technique the asymptotic order of the linear, Kolmogorov and sampling $n$-widths in the Gaussian-weighted space $L_{q}(\\\\mathbb{R}^{d}, \\\\gamma )$ of the unit ball of $W^{\\\\alpha }_{p}(\\\\mathbb{R}^{d}, \\\\gamma )$ for $1 \\\\leq q &amp;lt; p &amp;lt; \\\\infty $ and $q=p=2$.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drad051\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imanum/drad051","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了$\mathbb{R}^{d}$上具有标准高斯测度$\gamma $的混合光滑高斯加权Sobolev空间$W^{\alpha }_{p}(\mathbb{R}^{d}, \gamma )$(对于$1 &lt; p &lt; \infty $) $\alpha \in \mathbb{N}$的积分的数值逼近。基于$n$积分节点证明了最优正交的渐近阶收敛性,提出了一种构造渐近最优正交的新方法。对于相关问题,我们用类似的方法建立了$1 \leq q &lt; p &lt; \infty $和$q=p=2$在单位球$W^{\alpha }_{p}(\mathbb{R}^{d}, \gamma )$的高斯加权空间$L_{q}(\mathbb{R}^{d}, \gamma )$中线性宽度、Kolmogorov宽度和采样$n$ -宽度的渐近阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal numerical integration and approximation of functions on ℝd equipped with Gaussian measure
Abstract We investigate the numerical approximation of integrals over $\mathbb{R}^{d}$ equipped with the standard Gaussian measure $\gamma $ for integrands belonging to the Gaussian-weighted Sobolev spaces $W^{\alpha }_{p}(\mathbb{R}^{d}, \gamma )$ of mixed smoothness $\alpha \in \mathbb{N}$ for $1 &lt; p &lt; \infty $. We prove the asymptotic order of the convergence of optimal quadratures based on $n$ integration nodes and propose a novel method for constructing asymptotically optimal quadratures. As for related problems, we establish by a similar technique the asymptotic order of the linear, Kolmogorov and sampling $n$-widths in the Gaussian-weighted space $L_{q}(\mathbb{R}^{d}, \gamma )$ of the unit ball of $W^{\alpha }_{p}(\mathbb{R}^{d}, \gamma )$ for $1 \leq q &lt; p &lt; \infty $ and $q=p=2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信