{"title":"结构化数据源的贝叶斯去噪及其在基于学习的去噪中的意义","authors":"Wenda Zhou, Joachim Wabnig, Shirin Jalali","doi":"10.1093/imaiai/iaad036","DOIUrl":null,"url":null,"abstract":"Abstract Denoising a stationary process $(X_{i})_{i \\in \\mathbb{Z}}$ corrupted by additive white Gaussian noise $(Z_{i})_{i \\in \\mathbb{Z}}$ is a classic, well-studied and fundamental problem in information theory and statistical signal processing. However, finding theoretically founded computationally efficient denoising methods applicable to general sources is still an open problem. In the Bayesian set-up where the source distribution is known, a minimum mean square error (MMSE) denoiser estimates $X^{n}$ from noisy measurements $Y^{n}$ as $\\hat{X}^{n}=\\mathrm{E}[X^{n}|Y^{n}]$. However, for general sources, computing $\\mathrm{E}[X^{n}|Y^{n}]$ is computationally very challenging, if not infeasible. In this paper, starting from a Bayesian set-up, a novel denoising method, namely, quantized maximum a posteriori (Q-MAP) denoiser is proposed and its asymptotic performance is analysed. Both for memoryless sources, and for structured first-order Markov sources, it is shown that, asymptotically, as $\\sigma _{z}^{2} $ (noise variance) converges to zero, ${1\\over \\sigma _{z}^{2}} \\mathrm{E}[(X_{i}-\\hat{X}^{\\mathrm{QMAP}}_{i})^{2}]$ converges to the information dimension of the source. For the studied memoryless sources, this limit is known to be optimal. A key advantage of the Q-MAP denoiser, unlike an MMSE denoiser, is that it highlights the key properties of the source distribution that are to be used in its denoising. This key property leads to a new learning-based denoising approach that is applicable to generic structured sources. Using ImageNet database for training, initial simulation results exploring the performance of such a learning-based denoiser in image denoising are presented.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian denoising of structured sources and its implications on learning-based denoising\",\"authors\":\"Wenda Zhou, Joachim Wabnig, Shirin Jalali\",\"doi\":\"10.1093/imaiai/iaad036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Denoising a stationary process $(X_{i})_{i \\\\in \\\\mathbb{Z}}$ corrupted by additive white Gaussian noise $(Z_{i})_{i \\\\in \\\\mathbb{Z}}$ is a classic, well-studied and fundamental problem in information theory and statistical signal processing. However, finding theoretically founded computationally efficient denoising methods applicable to general sources is still an open problem. In the Bayesian set-up where the source distribution is known, a minimum mean square error (MMSE) denoiser estimates $X^{n}$ from noisy measurements $Y^{n}$ as $\\\\hat{X}^{n}=\\\\mathrm{E}[X^{n}|Y^{n}]$. However, for general sources, computing $\\\\mathrm{E}[X^{n}|Y^{n}]$ is computationally very challenging, if not infeasible. In this paper, starting from a Bayesian set-up, a novel denoising method, namely, quantized maximum a posteriori (Q-MAP) denoiser is proposed and its asymptotic performance is analysed. Both for memoryless sources, and for structured first-order Markov sources, it is shown that, asymptotically, as $\\\\sigma _{z}^{2} $ (noise variance) converges to zero, ${1\\\\over \\\\sigma _{z}^{2}} \\\\mathrm{E}[(X_{i}-\\\\hat{X}^{\\\\mathrm{QMAP}}_{i})^{2}]$ converges to the information dimension of the source. For the studied memoryless sources, this limit is known to be optimal. A key advantage of the Q-MAP denoiser, unlike an MMSE denoiser, is that it highlights the key properties of the source distribution that are to be used in its denoising. This key property leads to a new learning-based denoising approach that is applicable to generic structured sources. Using ImageNet database for training, initial simulation results exploring the performance of such a learning-based denoiser in image denoising are presented.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imaiai/iaad036\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad036","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bayesian denoising of structured sources and its implications on learning-based denoising
Abstract Denoising a stationary process $(X_{i})_{i \in \mathbb{Z}}$ corrupted by additive white Gaussian noise $(Z_{i})_{i \in \mathbb{Z}}$ is a classic, well-studied and fundamental problem in information theory and statistical signal processing. However, finding theoretically founded computationally efficient denoising methods applicable to general sources is still an open problem. In the Bayesian set-up where the source distribution is known, a minimum mean square error (MMSE) denoiser estimates $X^{n}$ from noisy measurements $Y^{n}$ as $\hat{X}^{n}=\mathrm{E}[X^{n}|Y^{n}]$. However, for general sources, computing $\mathrm{E}[X^{n}|Y^{n}]$ is computationally very challenging, if not infeasible. In this paper, starting from a Bayesian set-up, a novel denoising method, namely, quantized maximum a posteriori (Q-MAP) denoiser is proposed and its asymptotic performance is analysed. Both for memoryless sources, and for structured first-order Markov sources, it is shown that, asymptotically, as $\sigma _{z}^{2} $ (noise variance) converges to zero, ${1\over \sigma _{z}^{2}} \mathrm{E}[(X_{i}-\hat{X}^{\mathrm{QMAP}}_{i})^{2}]$ converges to the information dimension of the source. For the studied memoryless sources, this limit is known to be optimal. A key advantage of the Q-MAP denoiser, unlike an MMSE denoiser, is that it highlights the key properties of the source distribution that are to be used in its denoising. This key property leads to a new learning-based denoising approach that is applicable to generic structured sources. Using ImageNet database for training, initial simulation results exploring the performance of such a learning-based denoiser in image denoising are presented.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.