共形超四元数代数中的二维曲线H<sup>& amp;#8855;2<i> </i></sup>

Grégoire Lutanda Panga
{"title":"共形超四元数代数中的二维曲线H&lt;sup&gt;&amp; amp;#8855;2&lt;i&gt; &lt;/i&gt;&lt;/sup&gt;","authors":"Grégoire Lutanda Panga","doi":"10.4236/jamp.2023.1110191","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to outline the conditions of a conformal hyperquaternion algebra H⊗2m in which a higher order plane curve can be described by generalizing the well-known cases of conics and cubic curves in 2D. In other words, the determination of the order of a plane curve through n points and its conformal hyperquaternion algebra H⊗2m is the object of this work.","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D Curves in Conformal Hyperquaternion Algebras H&amp;lt;sup&amp;gt;&amp;amp;#8855;2&amp;lt;i&amp;gt;m&amp;lt;/i&amp;gt;&amp;lt;/sup&amp;gt;\",\"authors\":\"Grégoire Lutanda Panga\",\"doi\":\"10.4236/jamp.2023.1110191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to outline the conditions of a conformal hyperquaternion algebra H⊗2m in which a higher order plane curve can be described by generalizing the well-known cases of conics and cubic curves in 2D. In other words, the determination of the order of a plane curve through n points and its conformal hyperquaternion algebra H⊗2m is the object of this work.\",\"PeriodicalId\":15035,\"journal\":{\"name\":\"Journal of Applied Mathematics and Physics\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/jamp.2023.1110191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jamp.2023.1110191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是概述保形超四元数代数H⊗2m的条件,在H⊗2m中,高阶平面曲线可以通过推广众所周知的二维二次曲线和三次曲线来描述。换句话说,通过n个点及其共形超四元数代数H⊗2m来确定平面曲线的阶是本工作的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2D Curves in Conformal Hyperquaternion Algebras H&lt;sup&gt;&amp;#8855;2&lt;i&gt;m&lt;/i&gt;&lt;/sup&gt;
The aim of this paper is to outline the conditions of a conformal hyperquaternion algebra H⊗2m in which a higher order plane curve can be described by generalizing the well-known cases of conics and cubic curves in 2D. In other words, the determination of the order of a plane curve through n points and its conformal hyperquaternion algebra H⊗2m is the object of this work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信