基于深度学习的热大涡模拟(T-LES)先验重建

Yanis Zatout, Adrien Toutant, Onofrio Semeraro, Lionel Mathelin, Françoise Bataille
{"title":"基于深度学习的热大涡模拟(T-LES)先验重建","authors":"Yanis Zatout, Adrien Toutant, Onofrio Semeraro, Lionel Mathelin, Françoise Bataille","doi":"10.21494/iste.op.2023.1015","DOIUrl":null,"url":null,"abstract":". In this paper, we examine a machine learning-based method aimed at improving the accuracy of T-LES fields in the context of highly anisothermal flows. We compare this method with an already existing super-resolution method. We train our convolutional neural network by filtering Direct Numerical Simulation (DNS) snapshots into T-LES ones, and optimize our network to reconstruct DNS small scales from T-LES snapshots. Our results show that the neural network outperforms the classical reconstruction method in terms of the quality of the reconstructed coherent structures, but ends up increasing the Root Mean Square (RMS) values over the DNS ones","PeriodicalId":483187,"journal":{"name":"Entropie =","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A priori reconstruction of Thermal-Large Eddy Simulation (T-LES) by Deep Learning Reconstruction a priori de champs de Simulations des Grandes Echelles Thermiques par Apprentissage Profond\",\"authors\":\"Yanis Zatout, Adrien Toutant, Onofrio Semeraro, Lionel Mathelin, Françoise Bataille\",\"doi\":\"10.21494/iste.op.2023.1015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we examine a machine learning-based method aimed at improving the accuracy of T-LES fields in the context of highly anisothermal flows. We compare this method with an already existing super-resolution method. We train our convolutional neural network by filtering Direct Numerical Simulation (DNS) snapshots into T-LES ones, and optimize our network to reconstruct DNS small scales from T-LES snapshots. Our results show that the neural network outperforms the classical reconstruction method in terms of the quality of the reconstructed coherent structures, but ends up increasing the Root Mean Square (RMS) values over the DNS ones\",\"PeriodicalId\":483187,\"journal\":{\"name\":\"Entropie =\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropie =\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21494/iste.op.2023.1015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropie =","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21494/iste.op.2023.1015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A priori reconstruction of Thermal-Large Eddy Simulation (T-LES) by Deep Learning Reconstruction a priori de champs de Simulations des Grandes Echelles Thermiques par Apprentissage Profond
. In this paper, we examine a machine learning-based method aimed at improving the accuracy of T-LES fields in the context of highly anisothermal flows. We compare this method with an already existing super-resolution method. We train our convolutional neural network by filtering Direct Numerical Simulation (DNS) snapshots into T-LES ones, and optimize our network to reconstruct DNS small scales from T-LES snapshots. Our results show that the neural network outperforms the classical reconstruction method in terms of the quality of the reconstructed coherent structures, but ends up increasing the Root Mean Square (RMS) values over the DNS ones
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信