Joseph Ndakize Sebaziga, Anthony Twahirwa, Jonah Kazora, Frank Rusanganwa, Mathieu Mugunga Mbati, Steven Higiro, Sandrine Guhirwa, Jean Claude Nyandwi, Jean Marry Vienney Niyitegeka
{"title":"卢旺达东部Kayonza地区降雨变率和趋势的时空分析及气候风险管理改进","authors":"Joseph Ndakize Sebaziga, Anthony Twahirwa, Jonah Kazora, Frank Rusanganwa, Mathieu Mugunga Mbati, Steven Higiro, Sandrine Guhirwa, Jean Claude Nyandwi, Jean Marry Vienney Niyitegeka","doi":"10.1155/2023/5372701","DOIUrl":null,"url":null,"abstract":"The variability, intensity, and distribution of rainfall have drawn a lot of interest globally and especially in nations where rainfed agriculture is the norm. This article uses rainfall data from the Rwanda Meteorology Agency for the years 1981 to 2021 to delineate and analyze rainfall variability and trends in the Kayonza District. The time series were grouped using the K-means clustering technique based on computed Euclidean distance, the total within-cluster sum of squares, and the elbow plot technique to determine the optimal number of clusters. The coefficient of variation measures was employed to analyze rainfall variability, while Sen’s slope and the Mann–Kendall (MK) test were used, respectively, to find trends and changes in magnitude. The results indicated four near homogeneous zones named region one to four. The dry seasons indicated higher variability compared to rainy seasons and annual rainfall total with a variability of 128–142% over the southeastern part during June to August (JJA) season, while a variability of 16–48% was observed over most of the district during both annual and rainy seasons. It was further noted that the areas in the central part of the Kayonza District indicated a significant increasing trend at a significance level of 95% and above during January to February (JF), September to December (SOND), and on annual basis, while March to May (MAM) and JJA season exhibited no significant trend. The findings of this study are essential for creating adequate mitigation strategies to lessen climate change’s effects on agriculture as well as other socioeconomic sectors.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":"28 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial and Temporal Analysis of Rainfall Variability and Trends for Improved Climate Risk Management in Kayonza District, Eastern Rwanda\",\"authors\":\"Joseph Ndakize Sebaziga, Anthony Twahirwa, Jonah Kazora, Frank Rusanganwa, Mathieu Mugunga Mbati, Steven Higiro, Sandrine Guhirwa, Jean Claude Nyandwi, Jean Marry Vienney Niyitegeka\",\"doi\":\"10.1155/2023/5372701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The variability, intensity, and distribution of rainfall have drawn a lot of interest globally and especially in nations where rainfed agriculture is the norm. This article uses rainfall data from the Rwanda Meteorology Agency for the years 1981 to 2021 to delineate and analyze rainfall variability and trends in the Kayonza District. The time series were grouped using the K-means clustering technique based on computed Euclidean distance, the total within-cluster sum of squares, and the elbow plot technique to determine the optimal number of clusters. The coefficient of variation measures was employed to analyze rainfall variability, while Sen’s slope and the Mann–Kendall (MK) test were used, respectively, to find trends and changes in magnitude. The results indicated four near homogeneous zones named region one to four. The dry seasons indicated higher variability compared to rainy seasons and annual rainfall total with a variability of 128–142% over the southeastern part during June to August (JJA) season, while a variability of 16–48% was observed over most of the district during both annual and rainy seasons. It was further noted that the areas in the central part of the Kayonza District indicated a significant increasing trend at a significance level of 95% and above during January to February (JF), September to December (SOND), and on annual basis, while March to May (MAM) and JJA season exhibited no significant trend. The findings of this study are essential for creating adequate mitigation strategies to lessen climate change’s effects on agriculture as well as other socioeconomic sectors.\",\"PeriodicalId\":7353,\"journal\":{\"name\":\"Advances in Meteorology\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Meteorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5372701\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5372701","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Spatial and Temporal Analysis of Rainfall Variability and Trends for Improved Climate Risk Management in Kayonza District, Eastern Rwanda
The variability, intensity, and distribution of rainfall have drawn a lot of interest globally and especially in nations where rainfed agriculture is the norm. This article uses rainfall data from the Rwanda Meteorology Agency for the years 1981 to 2021 to delineate and analyze rainfall variability and trends in the Kayonza District. The time series were grouped using the K-means clustering technique based on computed Euclidean distance, the total within-cluster sum of squares, and the elbow plot technique to determine the optimal number of clusters. The coefficient of variation measures was employed to analyze rainfall variability, while Sen’s slope and the Mann–Kendall (MK) test were used, respectively, to find trends and changes in magnitude. The results indicated four near homogeneous zones named region one to four. The dry seasons indicated higher variability compared to rainy seasons and annual rainfall total with a variability of 128–142% over the southeastern part during June to August (JJA) season, while a variability of 16–48% was observed over most of the district during both annual and rainy seasons. It was further noted that the areas in the central part of the Kayonza District indicated a significant increasing trend at a significance level of 95% and above during January to February (JF), September to December (SOND), and on annual basis, while March to May (MAM) and JJA season exhibited no significant trend. The findings of this study are essential for creating adequate mitigation strategies to lessen climate change’s effects on agriculture as well as other socioeconomic sectors.
期刊介绍:
Advances in Meteorology is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of meteorology and climatology. Topics covered include, but are not limited to, forecasting techniques and applications, meteorological modeling, data analysis, atmospheric chemistry and physics, climate change, satellite meteorology, marine meteorology, and forest meteorology.