核反应堆动力系统最优状态反馈控制器的切换控制方法

Airan Dang, Bowen Tu, Xiuchun Luan
{"title":"核反应堆动力系统最优状态反馈控制器的切换控制方法","authors":"Airan Dang, Bowen Tu, Xiuchun Luan","doi":"10.4236/jamp.2023.118159","DOIUrl":null,"url":null,"abstract":"Due to the nonlinearity of the reactor power system, the load tracking situation is closely related to the initial steady-state power and the final steady-state power after the introduction of the state feedback controller. Therefore, when the initial power and the final stable power are determined, the particle swarm optimization algorithm is used to find the optimal controller parameters to minimize the load tracking error. Since there are many combinations of initial stable power and final stable power, it is not possible to find the optimal controller parameters for all combinations, so the neural network is used to take the final stable power and the initial stable power as input, and the optimal controller parameters as the output. This method obtains the optimal state feedback controller switching control method can achieve a very excellent load tracking effect in the case of continuous power change, in the power change time point, the response is fast, in the controller parameter switching time point, the actual power does not fluctuate due to the change of controller parameters.","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Switching Control Method for Optimal State Feedback Controller of Nuclear Reactor Power System\",\"authors\":\"Airan Dang, Bowen Tu, Xiuchun Luan\",\"doi\":\"10.4236/jamp.2023.118159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the nonlinearity of the reactor power system, the load tracking situation is closely related to the initial steady-state power and the final steady-state power after the introduction of the state feedback controller. Therefore, when the initial power and the final stable power are determined, the particle swarm optimization algorithm is used to find the optimal controller parameters to minimize the load tracking error. Since there are many combinations of initial stable power and final stable power, it is not possible to find the optimal controller parameters for all combinations, so the neural network is used to take the final stable power and the initial stable power as input, and the optimal controller parameters as the output. This method obtains the optimal state feedback controller switching control method can achieve a very excellent load tracking effect in the case of continuous power change, in the power change time point, the response is fast, in the controller parameter switching time point, the actual power does not fluctuate due to the change of controller parameters.\",\"PeriodicalId\":15035,\"journal\":{\"name\":\"Journal of Applied Mathematics and Physics\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/jamp.2023.118159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jamp.2023.118159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于电抗器电力系统的非线性,引入状态反馈控制器后,负荷跟踪情况与初始稳态功率和最终稳态功率密切相关。因此,当初始功率和最终稳定功率确定后,采用粒子群优化算法寻找最优控制器参数,使负荷跟踪误差最小。由于初始稳定功率和最终稳定功率有多种组合,不可能找到所有组合的最优控制器参数,因此采用神经网络将最终稳定功率和初始稳定功率作为输入,将最优控制器参数作为输出。该方法获得的最优状态反馈控制器切换控制方法可以在功率连续变化的情况下达到非常优异的负载跟踪效果,在功率变化时间点上,响应速度快,在控制器参数切换时间点上,实际功率不因控制器参数的变化而波动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Switching Control Method for Optimal State Feedback Controller of Nuclear Reactor Power System
Due to the nonlinearity of the reactor power system, the load tracking situation is closely related to the initial steady-state power and the final steady-state power after the introduction of the state feedback controller. Therefore, when the initial power and the final stable power are determined, the particle swarm optimization algorithm is used to find the optimal controller parameters to minimize the load tracking error. Since there are many combinations of initial stable power and final stable power, it is not possible to find the optimal controller parameters for all combinations, so the neural network is used to take the final stable power and the initial stable power as input, and the optimal controller parameters as the output. This method obtains the optimal state feedback controller switching control method can achieve a very excellent load tracking effect in the case of continuous power change, in the power change time point, the response is fast, in the controller parameter switching time point, the actual power does not fluctuate due to the change of controller parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信