Stephano Mariani, Sebastian Heinlein, Thomas Vogt, Peter Cawley
{"title":"导波管道监测系统在长时间野外作业中的性能","authors":"Stephano Mariani, Sebastian Heinlein, Thomas Vogt, Peter Cawley","doi":"10.32548/2023.me-04335","DOIUrl":null,"url":null,"abstract":"The performance of a permanently installed guided wave pipe monitoring system over extended periods has been investigated. Other than at a clamped support, the signals obtained in the three installations reported here have been stable to better than 1% (–40 dB) over periods of 12–24 months, even in hostile oil and gas facility environments. The use of baseline subtraction means that the sensitivity to defects is substantially better than that obtained in one-off inspection; in the two site examples reported here, improvements of 7 and 12 dB relative to one-off interpretation of the A-scan signal were obtained, and changes can be flagged automatically. The improvement in sensitivity is even larger at features such as welds and bends, which give significant reflections even in the absence of damage. The permanently installed system combines long-range guided wave monitoring for localized corrosion patches with eight precise thickness measurements around the pipe circumference, making it possible to monitor the general wall loss rate, as well as detect any more severe, localized corrosion. Permanently installed guided wave monitoring systems are therefore found to be a commercially attractive tool for the assessment of current and future piping integrity.","PeriodicalId":49876,"journal":{"name":"Materials Evaluation","volume":"10 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance of a Guided Wave Pipe Monitoring System Over Extended Periods of Field Operation\",\"authors\":\"Stephano Mariani, Sebastian Heinlein, Thomas Vogt, Peter Cawley\",\"doi\":\"10.32548/2023.me-04335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of a permanently installed guided wave pipe monitoring system over extended periods has been investigated. Other than at a clamped support, the signals obtained in the three installations reported here have been stable to better than 1% (–40 dB) over periods of 12–24 months, even in hostile oil and gas facility environments. The use of baseline subtraction means that the sensitivity to defects is substantially better than that obtained in one-off inspection; in the two site examples reported here, improvements of 7 and 12 dB relative to one-off interpretation of the A-scan signal were obtained, and changes can be flagged automatically. The improvement in sensitivity is even larger at features such as welds and bends, which give significant reflections even in the absence of damage. The permanently installed system combines long-range guided wave monitoring for localized corrosion patches with eight precise thickness measurements around the pipe circumference, making it possible to monitor the general wall loss rate, as well as detect any more severe, localized corrosion. Permanently installed guided wave monitoring systems are therefore found to be a commercially attractive tool for the assessment of current and future piping integrity.\",\"PeriodicalId\":49876,\"journal\":{\"name\":\"Materials Evaluation\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Evaluation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32548/2023.me-04335\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32548/2023.me-04335","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Performance of a Guided Wave Pipe Monitoring System Over Extended Periods of Field Operation
The performance of a permanently installed guided wave pipe monitoring system over extended periods has been investigated. Other than at a clamped support, the signals obtained in the three installations reported here have been stable to better than 1% (–40 dB) over periods of 12–24 months, even in hostile oil and gas facility environments. The use of baseline subtraction means that the sensitivity to defects is substantially better than that obtained in one-off inspection; in the two site examples reported here, improvements of 7 and 12 dB relative to one-off interpretation of the A-scan signal were obtained, and changes can be flagged automatically. The improvement in sensitivity is even larger at features such as welds and bends, which give significant reflections even in the absence of damage. The permanently installed system combines long-range guided wave monitoring for localized corrosion patches with eight precise thickness measurements around the pipe circumference, making it possible to monitor the general wall loss rate, as well as detect any more severe, localized corrosion. Permanently installed guided wave monitoring systems are therefore found to be a commercially attractive tool for the assessment of current and future piping integrity.
期刊介绍:
Materials Evaluation publishes articles, news and features intended to increase the NDT practitioner’s knowledge of the science and technology involved in the field, bringing informative articles to the NDT public while highlighting the ongoing efforts of ASNT to fulfill its mission. M.E. is a peer-reviewed journal, relying on technicians and researchers to help grow and educate its members by providing relevant, cutting-edge and exclusive content containing technical details and discussions. The only periodical of its kind, M.E. is circulated to members and nonmember paid subscribers. The magazine is truly international in scope, with readers in over 90 nations. The journal’s history and archive reaches back to the earliest formative days of the Society.