{"title":"在与平面的每个正方形相交的集合上","authors":"Michael Hrušák, Cristina Villanueva-Segovia","doi":"10.4064/cm9159-8-2023","DOIUrl":null,"url":null,"abstract":"We analyse properties of sets that contain at least one vertex of each square of the plane, in particular we study minimal elements (with respect to the subset relation) of the family $\\mathcal A$ of sets with this property. We prove that minimal elements","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On sets intersecting every square of the plane\",\"authors\":\"Michael Hrušák, Cristina Villanueva-Segovia\",\"doi\":\"10.4064/cm9159-8-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyse properties of sets that contain at least one vertex of each square of the plane, in particular we study minimal elements (with respect to the subset relation) of the family $\\\\mathcal A$ of sets with this property. We prove that minimal elements\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/cm9159-8-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/cm9159-8-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We analyse properties of sets that contain at least one vertex of each square of the plane, in particular we study minimal elements (with respect to the subset relation) of the family $\mathcal A$ of sets with this property. We prove that minimal elements