富Ciric型和富Hardy-Rogers型的不动点定理

IF 1.1 Q2 MATHEMATICS, APPLIED
None Anjali, Renu Chugh, Charu Batra
{"title":"富Ciric型和富Hardy-Rogers型的不动点定理","authors":"None Anjali, Renu Chugh, Charu Batra","doi":"10.3934/naco.2023022","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce enriched Ciric's type and enriched Hardy-Rogers contractions and prove fixed point theorems in Banach and convex metric spaces. We prove that Ciric's type and Hardy-Rogers contractions are unsaturated classes of mappings. We also study that Reich and Bianchini contractions are unsaturated classes of mappings. Additionally, we give some illustrations to demonstrate the effectiveness of our theoretical results.","PeriodicalId":44957,"journal":{"name":"Numerical Algebra Control and Optimization","volume":"69 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed point theorems of enriched Ciric's type and enriched Hardy-Rogers contractions\",\"authors\":\"None Anjali, Renu Chugh, Charu Batra\",\"doi\":\"10.3934/naco.2023022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce enriched Ciric's type and enriched Hardy-Rogers contractions and prove fixed point theorems in Banach and convex metric spaces. We prove that Ciric's type and Hardy-Rogers contractions are unsaturated classes of mappings. We also study that Reich and Bianchini contractions are unsaturated classes of mappings. Additionally, we give some illustrations to demonstrate the effectiveness of our theoretical results.\",\"PeriodicalId\":44957,\"journal\":{\"name\":\"Numerical Algebra Control and Optimization\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algebra Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/naco.2023022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algebra Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2023022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了富Ciric型和富Hardy-Rogers压缩,证明了Banach和凸度量空间中的不动点定理。证明了Ciric的类型和Hardy-Rogers的收缩是映射的不饱和类。我们还研究了Reich和Bianchini收缩是映射的不饱和类。此外,我们还给出了一些实例来证明我们的理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed point theorems of enriched Ciric's type and enriched Hardy-Rogers contractions
In this paper, we introduce enriched Ciric's type and enriched Hardy-Rogers contractions and prove fixed point theorems in Banach and convex metric spaces. We prove that Ciric's type and Hardy-Rogers contractions are unsaturated classes of mappings. We also study that Reich and Bianchini contractions are unsaturated classes of mappings. Additionally, we give some illustrations to demonstrate the effectiveness of our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
62
期刊介绍: Numerical Algebra, Control and Optimization (NACO) aims at publishing original papers on any non-trivial interplay between control and optimization, and numerical techniques for their underlying linear and nonlinear algebraic systems. Topics of interest to NACO include the following: original research in theory, algorithms and applications of optimization; numerical methods for linear and nonlinear algebraic systems arising in modelling, control and optimisation; and original theoretical and applied research and development in the control of systems including all facets of control theory and its applications. In the application areas, special interests are on artificial intelligence and data sciences. The journal also welcomes expository submissions on subjects of current relevance to readers of the journal. The publication of papers in NACO is free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信