Kripke语义中布尔函数的可定义性

IF 0.6 3区 数学 Q2 LOGIC
Naosuke Matsuda
{"title":"Kripke语义中布尔函数的可定义性","authors":"Naosuke Matsuda","doi":"10.1215/00294527-2023-0011","DOIUrl":null,"url":null,"abstract":"A set F of Boolean functions is said to be functionally complete if every Boolean function is definable by combining functions in F. Post clarified when a set of Boolean functions is functionally complete (with respect to classical semantics). In this paper, by extending Post’s theorem, we clarify when a set of Boolean functions is functionally complete with respect to Kripke semantics.","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":"47 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Definability of Boolean Functions in Kripke Semantics\",\"authors\":\"Naosuke Matsuda\",\"doi\":\"10.1215/00294527-2023-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A set F of Boolean functions is said to be functionally complete if every Boolean function is definable by combining functions in F. Post clarified when a set of Boolean functions is functionally complete (with respect to classical semantics). In this paper, by extending Post’s theorem, we clarify when a set of Boolean functions is functionally complete with respect to Kripke semantics.\",\"PeriodicalId\":51259,\"journal\":{\"name\":\"Notre Dame Journal of Formal Logic\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notre Dame Journal of Formal Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00294527-2023-0011\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notre Dame Journal of Formal Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00294527-2023-0011","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

如果每个布尔函数都可以通过组合F中的函数来定义,那么一个布尔函数集F就被称为功能完备的。Post澄清了什么时候一组布尔函数集是功能完备的(相对于经典语义)。在本文中,通过扩展Post定理,我们澄清了关于Kripke语义的一组布尔函数何时是函数完备的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Definability of Boolean Functions in Kripke Semantics
A set F of Boolean functions is said to be functionally complete if every Boolean function is definable by combining functions in F. Post clarified when a set of Boolean functions is functionally complete (with respect to classical semantics). In this paper, by extending Post’s theorem, we clarify when a set of Boolean functions is functionally complete with respect to Kripke semantics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
14.30%
发文量
14
审稿时长
>12 weeks
期刊介绍: The Notre Dame Journal of Formal Logic, founded in 1960, aims to publish high quality and original research papers in philosophical logic, mathematical logic, and related areas, including papers of compelling historical interest. The Journal is also willing to selectively publish expository articles on important current topics of interest as well as book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信