为COPD评估注入新活力:多感官家庭监测预测严重程度

Zixuan Xiao, Michal Muszynski, Ričards Marcinkevičs, Lukas Zimmerli, Adam Daniel Ivankay, Dario Kohlbrenner, Manuel Kuhn, Yves Nordmann, Ulrich Muehlner, Christian Clarenbach, Julia E. Vogt, Thomas Brunschwiler
{"title":"为COPD评估注入新活力:多感官家庭监测预测严重程度","authors":"Zixuan Xiao, Michal Muszynski, Ričards Marcinkevičs, Lukas Zimmerli, Adam Daniel Ivankay, Dario Kohlbrenner, Manuel Kuhn, Yves Nordmann, Ulrich Muehlner, Christian Clarenbach, Julia E. Vogt, Thomas Brunschwiler","doi":"10.1145/3577190.3614109","DOIUrl":null,"url":null,"abstract":"Chronic obstructive pulmonary disease (COPD) is a significant public health issue, affecting more than 100 million people worldwide. Remote patient monitoring has shown great promise in the efficient management of patients with chronic diseases. This work presents the analysis of the data from a monitoring system developed to track COPD symptoms alongside patients’ self-reports. In particular, we investigate the assessment of COPD severity using multisensory home-monitoring device data acquired from 30 patients over a period of three months. We describe a comprehensive data pre-processing and feature engineering pipeline for multimodal data from the remote home-monitoring of COPD patients. We develop and validate predictive models forecasting i) the absolute and ii) differenced COPD Assessment Test (CAT) scores based on the multisensory data. The best obtained models achieve Pearson’s correlation coefficient of 0.93 and 0.37 for absolute and differenced CAT scores. In addition, we investigate the importance of individual sensor modalities for predicting CAT scores using group sparse regularization techniques. Our results suggest that feature groups indicative of the patient’s general condition, such as static medical and physiological information, date, spirometer, and air quality, are crucial for predicting the absolute CAT score. For predicting changes in CAT scores, sleep and physical activity features are most important, alongside the previous CAT score value. Our analysis demonstrates the potential of remote patient monitoring for COPD management and investigates which sensor modalities are most indicative of COPD severity as assessed by the CAT score. Our findings contribute to the development of effective and data-driven COPD management strategies.","PeriodicalId":93171,"journal":{"name":"Companion Publication of the 2020 International Conference on Multimodal Interaction","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breathing New Life into COPD Assessment: Multisensory Home-monitoring for Predicting Severity\",\"authors\":\"Zixuan Xiao, Michal Muszynski, Ričards Marcinkevičs, Lukas Zimmerli, Adam Daniel Ivankay, Dario Kohlbrenner, Manuel Kuhn, Yves Nordmann, Ulrich Muehlner, Christian Clarenbach, Julia E. Vogt, Thomas Brunschwiler\",\"doi\":\"10.1145/3577190.3614109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chronic obstructive pulmonary disease (COPD) is a significant public health issue, affecting more than 100 million people worldwide. Remote patient monitoring has shown great promise in the efficient management of patients with chronic diseases. This work presents the analysis of the data from a monitoring system developed to track COPD symptoms alongside patients’ self-reports. In particular, we investigate the assessment of COPD severity using multisensory home-monitoring device data acquired from 30 patients over a period of three months. We describe a comprehensive data pre-processing and feature engineering pipeline for multimodal data from the remote home-monitoring of COPD patients. We develop and validate predictive models forecasting i) the absolute and ii) differenced COPD Assessment Test (CAT) scores based on the multisensory data. The best obtained models achieve Pearson’s correlation coefficient of 0.93 and 0.37 for absolute and differenced CAT scores. In addition, we investigate the importance of individual sensor modalities for predicting CAT scores using group sparse regularization techniques. Our results suggest that feature groups indicative of the patient’s general condition, such as static medical and physiological information, date, spirometer, and air quality, are crucial for predicting the absolute CAT score. For predicting changes in CAT scores, sleep and physical activity features are most important, alongside the previous CAT score value. Our analysis demonstrates the potential of remote patient monitoring for COPD management and investigates which sensor modalities are most indicative of COPD severity as assessed by the CAT score. Our findings contribute to the development of effective and data-driven COPD management strategies.\",\"PeriodicalId\":93171,\"journal\":{\"name\":\"Companion Publication of the 2020 International Conference on Multimodal Interaction\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Publication of the 2020 International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3577190.3614109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Publication of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577190.3614109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

慢性阻塞性肺疾病(COPD)是一个重大的公共卫生问题,影响到全世界1亿多人。远程患者监测在慢性病患者的有效管理方面显示出巨大的前景。这项工作分析了来自监测系统的数据,该系统用于跟踪COPD症状和患者的自我报告。特别地,我们研究了在三个月内从30名患者中获得的多感官家庭监测设备数据对COPD严重程度的评估。我们描述了一种全面的数据预处理和特征工程管道,用于远程家庭监测COPD患者的多模式数据。我们开发并验证了基于多感官数据预测i)绝对和ii)差异COPD评估测试(CAT)分数的预测模型。获得的最佳模型的绝对CAT评分和差异CAT评分的Pearson相关系数分别为0.93和0.37。此外,我们研究了使用组稀疏正则化技术预测CAT分数的单个传感器模式的重要性。我们的研究结果表明,指示患者一般状况的特征组,如静态医学和生理信息、日期、肺活量计和空气质量,对于预测绝对CAT评分至关重要。为了预测CAT评分的变化,除了之前的CAT评分值外,睡眠和身体活动特征是最重要的。我们的分析证明了远程患者监测COPD管理的潜力,并调查了CAT评分评估的哪种传感器模式最能指示COPD严重程度。我们的研究结果有助于制定有效的数据驱动的COPD管理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breathing New Life into COPD Assessment: Multisensory Home-monitoring for Predicting Severity
Chronic obstructive pulmonary disease (COPD) is a significant public health issue, affecting more than 100 million people worldwide. Remote patient monitoring has shown great promise in the efficient management of patients with chronic diseases. This work presents the analysis of the data from a monitoring system developed to track COPD symptoms alongside patients’ self-reports. In particular, we investigate the assessment of COPD severity using multisensory home-monitoring device data acquired from 30 patients over a period of three months. We describe a comprehensive data pre-processing and feature engineering pipeline for multimodal data from the remote home-monitoring of COPD patients. We develop and validate predictive models forecasting i) the absolute and ii) differenced COPD Assessment Test (CAT) scores based on the multisensory data. The best obtained models achieve Pearson’s correlation coefficient of 0.93 and 0.37 for absolute and differenced CAT scores. In addition, we investigate the importance of individual sensor modalities for predicting CAT scores using group sparse regularization techniques. Our results suggest that feature groups indicative of the patient’s general condition, such as static medical and physiological information, date, spirometer, and air quality, are crucial for predicting the absolute CAT score. For predicting changes in CAT scores, sleep and physical activity features are most important, alongside the previous CAT score value. Our analysis demonstrates the potential of remote patient monitoring for COPD management and investigates which sensor modalities are most indicative of COPD severity as assessed by the CAT score. Our findings contribute to the development of effective and data-driven COPD management strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信