TongueTap:多模态舌手势识别与头戴式设备

Tan Gemicioglu, R. Michael Winters, Yu-Te Wang, Thomas M. Gable, Ivan J. Tashev
{"title":"TongueTap:多模态舌手势识别与头戴式设备","authors":"Tan Gemicioglu, R. Michael Winters, Yu-Te Wang, Thomas M. Gable, Ivan J. Tashev","doi":"10.1145/3577190.3614120","DOIUrl":null,"url":null,"abstract":"Mouth-based interfaces are a promising new approach enabling silent, hands-free and eyes-free interaction with wearable devices. However, interfaces sensing mouth movements are traditionally custom-designed and placed near or within the mouth. TongueTap synchronizes multimodal EEG, PPG, IMU, eye tracking and head tracking data from two commercial headsets to facilitate tongue gesture recognition using only off-the-shelf devices on the upper face. We classified eight closed-mouth tongue gestures with 94% accuracy, offering an invisible and inaudible method for discreet control of head-worn devices. Moreover, we found that the IMU alone differentiates eight gestures with 80% accuracy and a subset of four gestures with 92% accuracy. We built a dataset of 48,000 gesture trials across 16 participants, allowing TongueTap to perform user-independent classification. Our findings suggest tongue gestures can be a viable interaction technique for VR/AR headsets and earables without requiring novel hardware.","PeriodicalId":93171,"journal":{"name":"Companion Publication of the 2020 International Conference on Multimodal Interaction","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TongueTap: Multimodal Tongue Gesture Recognition with Head-Worn Devices\",\"authors\":\"Tan Gemicioglu, R. Michael Winters, Yu-Te Wang, Thomas M. Gable, Ivan J. Tashev\",\"doi\":\"10.1145/3577190.3614120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mouth-based interfaces are a promising new approach enabling silent, hands-free and eyes-free interaction with wearable devices. However, interfaces sensing mouth movements are traditionally custom-designed and placed near or within the mouth. TongueTap synchronizes multimodal EEG, PPG, IMU, eye tracking and head tracking data from two commercial headsets to facilitate tongue gesture recognition using only off-the-shelf devices on the upper face. We classified eight closed-mouth tongue gestures with 94% accuracy, offering an invisible and inaudible method for discreet control of head-worn devices. Moreover, we found that the IMU alone differentiates eight gestures with 80% accuracy and a subset of four gestures with 92% accuracy. We built a dataset of 48,000 gesture trials across 16 participants, allowing TongueTap to perform user-independent classification. Our findings suggest tongue gestures can be a viable interaction technique for VR/AR headsets and earables without requiring novel hardware.\",\"PeriodicalId\":93171,\"journal\":{\"name\":\"Companion Publication of the 2020 International Conference on Multimodal Interaction\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Publication of the 2020 International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3577190.3614120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Publication of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577190.3614120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于口部的接口是一种很有前途的新方法,可以与可穿戴设备进行无声、免提和免目的交互。然而,感知口腔运动的界面传统上是定制设计的,并放置在口腔附近或口腔内。TongueTap可以同步来自两款商用耳机的多模态EEG、PPG、IMU、眼动追踪和头部追踪数据,仅使用上面部的现成设备即可实现舌头手势识别。我们对8种闭嘴舌头手势进行了分类,准确率高达94%,为谨慎控制头戴式设备提供了一种看不见、听不见的方法。此外,我们发现IMU单独区分8种手势的准确率为80%,区分4种手势的子集的准确率为92%。我们建立了一个包含16名参与者的48,000个手势试验的数据集,允许TongueTap执行独立于用户的分类。我们的研究结果表明,舌头手势可以成为VR/AR耳机和可穿戴设备的一种可行的交互技术,而不需要新的硬件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TongueTap: Multimodal Tongue Gesture Recognition with Head-Worn Devices
Mouth-based interfaces are a promising new approach enabling silent, hands-free and eyes-free interaction with wearable devices. However, interfaces sensing mouth movements are traditionally custom-designed and placed near or within the mouth. TongueTap synchronizes multimodal EEG, PPG, IMU, eye tracking and head tracking data from two commercial headsets to facilitate tongue gesture recognition using only off-the-shelf devices on the upper face. We classified eight closed-mouth tongue gestures with 94% accuracy, offering an invisible and inaudible method for discreet control of head-worn devices. Moreover, we found that the IMU alone differentiates eight gestures with 80% accuracy and a subset of four gestures with 92% accuracy. We built a dataset of 48,000 gesture trials across 16 participants, allowing TongueTap to perform user-independent classification. Our findings suggest tongue gestures can be a viable interaction technique for VR/AR headsets and earables without requiring novel hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信