{"title":"大跨度悬索桥吊杆环境腐蚀等效换算研究","authors":"Zhijie Yuan, Hao Wang, Rou Li, Jianxiao Mao, Hui Gao","doi":"10.1108/acmm-08-2023-2883","DOIUrl":null,"url":null,"abstract":"Purpose This paper aims to investigate the equivalent relationship between accelerated corrosion tests and real environmental spectrum of suspenders in long-span suspension bridge considering multiple factors action. Design/methodology/approach Based on Faraday's law, corrosion current was used as a measure of metal corrosion, and the equivalent conversion relationship between laboratory environment and real service environment was established. The equivalent conversion method for bridge structural steel had been determined under different temperature, humidity, pH value and NaCl concentration conditions. The compilation of environmental spectra for large span bridges considering multiple factors and the principle of equivalent conversion have been proposed. Findings Environmental factors, including temperature, humidity, pH value and NaCl concentration, have significant impact on the corrosion degree of suspension steel wires, and only considering these two factors for equivalent conversion cannot accurately reflect the true service environment of the bridge. The 33.8-h salt spray accelerated corrosion test using the standard conditions can be equivalent to one year of suspenders corrosion in a real service environment. Originality/value The equivalent accelerated corrosion method for steel wires proposed in this study can effectively predict the corrosion degree of the suspenders, which has been verified to be correct and can provide theoretical guidance for the development of corrosion test plans for steel wires and engineering technical basis for anti-corrosion control and calendar life research of suspension bridge suspenders.","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":"93 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivalent conversion investigation of environmental corrosion of suspenders in long-span suspension bridge\",\"authors\":\"Zhijie Yuan, Hao Wang, Rou Li, Jianxiao Mao, Hui Gao\",\"doi\":\"10.1108/acmm-08-2023-2883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose This paper aims to investigate the equivalent relationship between accelerated corrosion tests and real environmental spectrum of suspenders in long-span suspension bridge considering multiple factors action. Design/methodology/approach Based on Faraday's law, corrosion current was used as a measure of metal corrosion, and the equivalent conversion relationship between laboratory environment and real service environment was established. The equivalent conversion method for bridge structural steel had been determined under different temperature, humidity, pH value and NaCl concentration conditions. The compilation of environmental spectra for large span bridges considering multiple factors and the principle of equivalent conversion have been proposed. Findings Environmental factors, including temperature, humidity, pH value and NaCl concentration, have significant impact on the corrosion degree of suspension steel wires, and only considering these two factors for equivalent conversion cannot accurately reflect the true service environment of the bridge. The 33.8-h salt spray accelerated corrosion test using the standard conditions can be equivalent to one year of suspenders corrosion in a real service environment. Originality/value The equivalent accelerated corrosion method for steel wires proposed in this study can effectively predict the corrosion degree of the suspenders, which has been verified to be correct and can provide theoretical guidance for the development of corrosion test plans for steel wires and engineering technical basis for anti-corrosion control and calendar life research of suspension bridge suspenders.\",\"PeriodicalId\":8217,\"journal\":{\"name\":\"Anti-corrosion Methods and Materials\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-corrosion Methods and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/acmm-08-2023-2883\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-corrosion Methods and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/acmm-08-2023-2883","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Equivalent conversion investigation of environmental corrosion of suspenders in long-span suspension bridge
Purpose This paper aims to investigate the equivalent relationship between accelerated corrosion tests and real environmental spectrum of suspenders in long-span suspension bridge considering multiple factors action. Design/methodology/approach Based on Faraday's law, corrosion current was used as a measure of metal corrosion, and the equivalent conversion relationship between laboratory environment and real service environment was established. The equivalent conversion method for bridge structural steel had been determined under different temperature, humidity, pH value and NaCl concentration conditions. The compilation of environmental spectra for large span bridges considering multiple factors and the principle of equivalent conversion have been proposed. Findings Environmental factors, including temperature, humidity, pH value and NaCl concentration, have significant impact on the corrosion degree of suspension steel wires, and only considering these two factors for equivalent conversion cannot accurately reflect the true service environment of the bridge. The 33.8-h salt spray accelerated corrosion test using the standard conditions can be equivalent to one year of suspenders corrosion in a real service environment. Originality/value The equivalent accelerated corrosion method for steel wires proposed in this study can effectively predict the corrosion degree of the suspenders, which has been verified to be correct and can provide theoretical guidance for the development of corrosion test plans for steel wires and engineering technical basis for anti-corrosion control and calendar life research of suspension bridge suspenders.
期刊介绍:
Anti-Corrosion Methods and Materials publishes a broad coverage of the materials and techniques employed in corrosion prevention. Coverage is essentially of a practical nature and designed to be of material benefit to those working in the field. Proven applications are covered together with company news and new product information. Anti-Corrosion Methods and Materials now also includes research articles that reflect the most interesting and strategically important research and development activities from around the world.
Every year, industry pays a massive and rising cost for its corrosion problems. Research and development into new materials, processes and initiatives to combat this loss is increasing, and new findings are constantly coming to light which can help to beat corrosion problems throughout industry. This journal uniquely focuses on these exciting developments to make essential reading for anyone aiming to regain profits lost through corrosion difficulties.
• New methods, materials and software
• New developments in research and industry
• Stainless steels
• Protection of structural steelwork
• Industry update, conference news, dates and events
• Environmental issues
• Health & safety, including EC regulations
• Corrosion monitoring and plant health assessment
• The latest equipment and processes
• Corrosion cost and corrosion risk management.