{"title":"二维三次五次非线性schrÖdinger方程的归一化基态注释","authors":"DEKE LI, QINGXUAN WANG","doi":"10.1017/s0004972723000977","DOIUrl":null,"url":null,"abstract":"Abstract We consider the two-dimensional minimisation problem for $\\inf \\{ E_a(\\varphi ):\\varphi \\in H^1(\\mathbb {R}^2)\\ \\text {and}\\ \\|\\varphi \\|_2^2=1\\}$ , where the energy functional $ E_a(\\varphi )$ is a cubic-quintic Schrödinger functional defined by $E_a(\\varphi ):=\\tfrac 12\\int _{\\mathbb {R}^2}|\\nabla \\varphi |^2\\,dx-\\tfrac 14a\\int _{\\mathbb {R}^2}|\\varphi |^4\\,dx+\\tfrac 16a^2\\int _{\\mathbb {R}^2}|\\varphi |^6\\,dx$ . We study the existence and asymptotic behaviour of the ground state. The ground state $\\varphi _{a}$ exists if and only if the $L^2$ mass a satisfies $a>a_*={\\lVert Q\\rVert }^2_2$ , where Q is the unique positive radial solution of $-\\Delta u+ u-u^3=0$ in $\\mathbb {R}^2$ . We show the optimal vanishing rate $\\int _{\\mathbb {R}^2}|\\nabla \\varphi _{a}|^2\\,dx\\sim (a-a_*)$ as $a\\searrow a_*$ and obtain the limit profile.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"29 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A NOTE ON NORMALISED GROUND STATES FOR THE TWO-DIMENSIONAL CUBIC-QUINTIC NONLINEAR SCHRÖDINGER EQUATION\",\"authors\":\"DEKE LI, QINGXUAN WANG\",\"doi\":\"10.1017/s0004972723000977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the two-dimensional minimisation problem for $\\\\inf \\\\{ E_a(\\\\varphi ):\\\\varphi \\\\in H^1(\\\\mathbb {R}^2)\\\\ \\\\text {and}\\\\ \\\\|\\\\varphi \\\\|_2^2=1\\\\}$ , where the energy functional $ E_a(\\\\varphi )$ is a cubic-quintic Schrödinger functional defined by $E_a(\\\\varphi ):=\\\\tfrac 12\\\\int _{\\\\mathbb {R}^2}|\\\\nabla \\\\varphi |^2\\\\,dx-\\\\tfrac 14a\\\\int _{\\\\mathbb {R}^2}|\\\\varphi |^4\\\\,dx+\\\\tfrac 16a^2\\\\int _{\\\\mathbb {R}^2}|\\\\varphi |^6\\\\,dx$ . We study the existence and asymptotic behaviour of the ground state. The ground state $\\\\varphi _{a}$ exists if and only if the $L^2$ mass a satisfies $a>a_*={\\\\lVert Q\\\\rVert }^2_2$ , where Q is the unique positive radial solution of $-\\\\Delta u+ u-u^3=0$ in $\\\\mathbb {R}^2$ . We show the optimal vanishing rate $\\\\int _{\\\\mathbb {R}^2}|\\\\nabla \\\\varphi _{a}|^2\\\\,dx\\\\sim (a-a_*)$ as $a\\\\searrow a_*$ and obtain the limit profile.\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972723000977\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0004972723000977","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A NOTE ON NORMALISED GROUND STATES FOR THE TWO-DIMENSIONAL CUBIC-QUINTIC NONLINEAR SCHRÖDINGER EQUATION
Abstract We consider the two-dimensional minimisation problem for $\inf \{ E_a(\varphi ):\varphi \in H^1(\mathbb {R}^2)\ \text {and}\ \|\varphi \|_2^2=1\}$ , where the energy functional $ E_a(\varphi )$ is a cubic-quintic Schrödinger functional defined by $E_a(\varphi ):=\tfrac 12\int _{\mathbb {R}^2}|\nabla \varphi |^2\,dx-\tfrac 14a\int _{\mathbb {R}^2}|\varphi |^4\,dx+\tfrac 16a^2\int _{\mathbb {R}^2}|\varphi |^6\,dx$ . We study the existence and asymptotic behaviour of the ground state. The ground state $\varphi _{a}$ exists if and only if the $L^2$ mass a satisfies $a>a_*={\lVert Q\rVert }^2_2$ , where Q is the unique positive radial solution of $-\Delta u+ u-u^3=0$ in $\mathbb {R}^2$ . We show the optimal vanishing rate $\int _{\mathbb {R}^2}|\nabla \varphi _{a}|^2\,dx\sim (a-a_*)$ as $a\searrow a_*$ and obtain the limit profile.
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society