二维三次五次非线性schrÖdinger方程的归一化基态注释

IF 0.6 4区 数学 Q3 MATHEMATICS
DEKE LI, QINGXUAN WANG
{"title":"二维三次五次非线性schrÖdinger方程的归一化基态注释","authors":"DEKE LI, QINGXUAN WANG","doi":"10.1017/s0004972723000977","DOIUrl":null,"url":null,"abstract":"Abstract We consider the two-dimensional minimisation problem for $\\inf \\{ E_a(\\varphi ):\\varphi \\in H^1(\\mathbb {R}^2)\\ \\text {and}\\ \\|\\varphi \\|_2^2=1\\}$ , where the energy functional $ E_a(\\varphi )$ is a cubic-quintic Schrödinger functional defined by $E_a(\\varphi ):=\\tfrac 12\\int _{\\mathbb {R}^2}|\\nabla \\varphi |^2\\,dx-\\tfrac 14a\\int _{\\mathbb {R}^2}|\\varphi |^4\\,dx+\\tfrac 16a^2\\int _{\\mathbb {R}^2}|\\varphi |^6\\,dx$ . We study the existence and asymptotic behaviour of the ground state. The ground state $\\varphi _{a}$ exists if and only if the $L^2$ mass a satisfies $a>a_*={\\lVert Q\\rVert }^2_2$ , where Q is the unique positive radial solution of $-\\Delta u+ u-u^3=0$ in $\\mathbb {R}^2$ . We show the optimal vanishing rate $\\int _{\\mathbb {R}^2}|\\nabla \\varphi _{a}|^2\\,dx\\sim (a-a_*)$ as $a\\searrow a_*$ and obtain the limit profile.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"29 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A NOTE ON NORMALISED GROUND STATES FOR THE TWO-DIMENSIONAL CUBIC-QUINTIC NONLINEAR SCHRÖDINGER EQUATION\",\"authors\":\"DEKE LI, QINGXUAN WANG\",\"doi\":\"10.1017/s0004972723000977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the two-dimensional minimisation problem for $\\\\inf \\\\{ E_a(\\\\varphi ):\\\\varphi \\\\in H^1(\\\\mathbb {R}^2)\\\\ \\\\text {and}\\\\ \\\\|\\\\varphi \\\\|_2^2=1\\\\}$ , where the energy functional $ E_a(\\\\varphi )$ is a cubic-quintic Schrödinger functional defined by $E_a(\\\\varphi ):=\\\\tfrac 12\\\\int _{\\\\mathbb {R}^2}|\\\\nabla \\\\varphi |^2\\\\,dx-\\\\tfrac 14a\\\\int _{\\\\mathbb {R}^2}|\\\\varphi |^4\\\\,dx+\\\\tfrac 16a^2\\\\int _{\\\\mathbb {R}^2}|\\\\varphi |^6\\\\,dx$ . We study the existence and asymptotic behaviour of the ground state. The ground state $\\\\varphi _{a}$ exists if and only if the $L^2$ mass a satisfies $a>a_*={\\\\lVert Q\\\\rVert }^2_2$ , where Q is the unique positive radial solution of $-\\\\Delta u+ u-u^3=0$ in $\\\\mathbb {R}^2$ . We show the optimal vanishing rate $\\\\int _{\\\\mathbb {R}^2}|\\\\nabla \\\\varphi _{a}|^2\\\\,dx\\\\sim (a-a_*)$ as $a\\\\searrow a_*$ and obtain the limit profile.\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972723000977\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0004972723000977","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要考虑$\inf \{ E_a(\varphi ):\varphi \in H^1(\mathbb {R}^2)\ \text {and}\ \|\varphi \|_2^2=1\}$的二维最小化问题,其中能量泛函$ E_a(\varphi )$是由$E_a(\varphi ):=\tfrac 12\int _{\mathbb {R}^2}|\nabla \varphi |^2\,dx-\tfrac 14a\int _{\mathbb {R}^2}|\varphi |^4\,dx+\tfrac 16a^2\int _{\mathbb {R}^2}|\varphi |^6\,dx$定义的三次五次Schrödinger泛函。我们研究了基态的存在性和渐近性。基态$\varphi _{a}$存在当且仅当$L^2$质量a满足$a>a_*={\lVert Q\rVert }^2_2$,其中Q是$\mathbb {R}^2$中$-\Delta u+ u-u^3=0$的唯一正径向解。我们证明了最优消失率$\int _{\mathbb {R}^2}|\nabla \varphi _{a}|^2\,dx\sim (a-a_*)$为$a\searrow a_*$,并得到了极限轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A NOTE ON NORMALISED GROUND STATES FOR THE TWO-DIMENSIONAL CUBIC-QUINTIC NONLINEAR SCHRÖDINGER EQUATION
Abstract We consider the two-dimensional minimisation problem for $\inf \{ E_a(\varphi ):\varphi \in H^1(\mathbb {R}^2)\ \text {and}\ \|\varphi \|_2^2=1\}$ , where the energy functional $ E_a(\varphi )$ is a cubic-quintic Schrödinger functional defined by $E_a(\varphi ):=\tfrac 12\int _{\mathbb {R}^2}|\nabla \varphi |^2\,dx-\tfrac 14a\int _{\mathbb {R}^2}|\varphi |^4\,dx+\tfrac 16a^2\int _{\mathbb {R}^2}|\varphi |^6\,dx$ . We study the existence and asymptotic behaviour of the ground state. The ground state $\varphi _{a}$ exists if and only if the $L^2$ mass a satisfies $a>a_*={\lVert Q\rVert }^2_2$ , where Q is the unique positive radial solution of $-\Delta u+ u-u^3=0$ in $\mathbb {R}^2$ . We show the optimal vanishing rate $\int _{\mathbb {R}^2}|\nabla \varphi _{a}|^2\,dx\sim (a-a_*)$ as $a\searrow a_*$ and obtain the limit profile.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信