工业系统传感器识别中的机器学习

IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Lucas Weber, Richard Lenz
{"title":"工业系统传感器识别中的机器学习","authors":"Lucas Weber, Richard Lenz","doi":"10.1515/itit-2023-0051","DOIUrl":null,"url":null,"abstract":"Abstract This paper explores the potential and limitations of machine learning for sensor signal identification in complex industrial systems. The objective is a tool to assist engineers in finding the correct inputs to digital twins and simulations from a set of unlabeled sensor signals. A naive end-to-end machine learning approach is usually not applicable to this task, as it would require many comparable industrial systems to learn from. We present a semi-structured approach that uses observations from the manual classification of time series and combines different algorithms to partition the set of signals into smaller groups of signals that share common characteristics. Using a real-world dataset from several power plants, we evaluate our solution for scaling-invariant measurement identification and functional relationship inference using change-point correlations.","PeriodicalId":43953,"journal":{"name":"IT-Information Technology","volume":"34 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning in sensor identification for industrial systems\",\"authors\":\"Lucas Weber, Richard Lenz\",\"doi\":\"10.1515/itit-2023-0051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper explores the potential and limitations of machine learning for sensor signal identification in complex industrial systems. The objective is a tool to assist engineers in finding the correct inputs to digital twins and simulations from a set of unlabeled sensor signals. A naive end-to-end machine learning approach is usually not applicable to this task, as it would require many comparable industrial systems to learn from. We present a semi-structured approach that uses observations from the manual classification of time series and combines different algorithms to partition the set of signals into smaller groups of signals that share common characteristics. Using a real-world dataset from several power plants, we evaluate our solution for scaling-invariant measurement identification and functional relationship inference using change-point correlations.\",\"PeriodicalId\":43953,\"journal\":{\"name\":\"IT-Information Technology\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IT-Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/itit-2023-0051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IT-Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/itit-2023-0051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文探讨了机器学习在复杂工业系统中用于传感器信号识别的潜力和局限性。目标是帮助工程师从一组未标记的传感器信号中找到数字双胞胎和模拟的正确输入的工具。简单的端到端机器学习方法通常不适用于此任务,因为它需要许多可比较的工业系统来学习。我们提出了一种半结构化的方法,该方法使用时间序列人工分类的观察结果,并结合不同的算法将信号集划分为具有共同特征的更小的信号组。使用来自几个发电厂的真实数据集,我们评估了使用变化点相关性的缩放不变测量识别和功能关系推断的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning in sensor identification for industrial systems
Abstract This paper explores the potential and limitations of machine learning for sensor signal identification in complex industrial systems. The objective is a tool to assist engineers in finding the correct inputs to digital twins and simulations from a set of unlabeled sensor signals. A naive end-to-end machine learning approach is usually not applicable to this task, as it would require many comparable industrial systems to learn from. We present a semi-structured approach that uses observations from the manual classification of time series and combines different algorithms to partition the set of signals into smaller groups of signals that share common characteristics. Using a real-world dataset from several power plants, we evaluate our solution for scaling-invariant measurement identification and functional relationship inference using change-point correlations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IT-Information Technology
IT-Information Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.80
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信