缓冲和约简多维分布函数及其在优化中的应用

IF 1.3 4区 数学 Q2 MATHEMATICS, APPLIED
Bogdan Grechuk, Michael Zabarankin, Alexander Mafusalov, Stan Uryasev
{"title":"缓冲和约简多维分布函数及其在优化中的应用","authors":"Bogdan Grechuk, Michael Zabarankin, Alexander Mafusalov, Stan Uryasev","doi":"10.1007/s11590-023-02045-1","DOIUrl":null,"url":null,"abstract":"Abstract For a random variable, superdistribution has emerged as a valuable probability concept. Similar to cumulative distribution function (CDF), it uniquely defines the random variable and can be evaluated with a simple one-dimensional minimization formula. This work leverages the structure of that formula to introduce buffered CDF (bCDF) and reduced CDF (rCDF) for random vectors. bCDF and rCDF are shown to be the minimal Schur-convex upper bound and the maximal Schur-concave lower bound of the multivariate CDF, respectively. Special structure of bCDF and rCDF is used to construct an algorithm for solving optimization problems with bCDF and rCDF in objective or constraints. The efficiency of the algorithm is demonstrated in a case study on optimization of a collateralized debt obligation with bCDF functions in constraints.","PeriodicalId":49720,"journal":{"name":"Optimization Letters","volume":"32 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Buffered and Reduced Multidimensional Distribution Functions and Their Application in Optimization\",\"authors\":\"Bogdan Grechuk, Michael Zabarankin, Alexander Mafusalov, Stan Uryasev\",\"doi\":\"10.1007/s11590-023-02045-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For a random variable, superdistribution has emerged as a valuable probability concept. Similar to cumulative distribution function (CDF), it uniquely defines the random variable and can be evaluated with a simple one-dimensional minimization formula. This work leverages the structure of that formula to introduce buffered CDF (bCDF) and reduced CDF (rCDF) for random vectors. bCDF and rCDF are shown to be the minimal Schur-convex upper bound and the maximal Schur-concave lower bound of the multivariate CDF, respectively. Special structure of bCDF and rCDF is used to construct an algorithm for solving optimization problems with bCDF and rCDF in objective or constraints. The efficiency of the algorithm is demonstrated in a case study on optimization of a collateralized debt obligation with bCDF functions in constraints.\",\"PeriodicalId\":49720,\"journal\":{\"name\":\"Optimization Letters\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11590-023-02045-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11590-023-02045-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

对于随机变量,超分布已经成为一个有价值的概率概念。与累积分布函数(CDF)类似,它唯一地定义了随机变量,并且可以用简单的一维最小化公式进行计算。本工作利用该公式的结构为随机向量引入缓冲CDF (bCDF)和减少CDF (rCDF)。证明bCDF和rCDF分别是多元CDF的最小schur -凸上界和最大schur -凹下界。利用bCDF和rCDF的特殊结构,构造了一种求解目标约束下bCDF和rCDF优化问题的算法。以约束条件下具有bCDF函数的债务抵押债券优化为例,验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Buffered and Reduced Multidimensional Distribution Functions and Their Application in Optimization
Abstract For a random variable, superdistribution has emerged as a valuable probability concept. Similar to cumulative distribution function (CDF), it uniquely defines the random variable and can be evaluated with a simple one-dimensional minimization formula. This work leverages the structure of that formula to introduce buffered CDF (bCDF) and reduced CDF (rCDF) for random vectors. bCDF and rCDF are shown to be the minimal Schur-convex upper bound and the maximal Schur-concave lower bound of the multivariate CDF, respectively. Special structure of bCDF and rCDF is used to construct an algorithm for solving optimization problems with bCDF and rCDF in objective or constraints. The efficiency of the algorithm is demonstrated in a case study on optimization of a collateralized debt obligation with bCDF functions in constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optimization Letters
Optimization Letters 管理科学-应用数学
CiteScore
3.40
自引率
6.20%
发文量
116
审稿时长
9 months
期刊介绍: Optimization Letters is an international journal covering all aspects of optimization, including theory, algorithms, computational studies, and applications, and providing an outlet for rapid publication of short communications in the field. Originality, significance, quality and clarity are the essential criteria for choosing the material to be published. Optimization Letters has been expanding in all directions at an astonishing rate during the last few decades. New algorithmic and theoretical techniques have been developed, the diffusion into other disciplines has proceeded at a rapid pace, and our knowledge of all aspects of the field has grown even more profound. At the same time one of the most striking trends in optimization is the constantly increasing interdisciplinary nature of the field. Optimization Letters aims to communicate in a timely fashion all recent developments in optimization with concise short articles (limited to a total of ten journal pages). Such concise articles will be easily accessible by readers working in any aspects of optimization and wish to be informed of recent developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信