正交和辛随机张量模型的对偶性

IF 1.5 Q2 PHYSICS, MATHEMATICAL
Razvan Gurau, Hannes Keppler
{"title":"正交和辛随机张量模型的对偶性","authors":"Razvan Gurau, Hannes Keppler","doi":"10.4171/aihpd/177","DOIUrl":null,"url":null,"abstract":"The groups $\\mathrm{O}(N)$ and $\\mathrm{Sp}(N)$ are related by an analytic continuation to negative values of $N$, $\\mathrm{O}(-N)\\simeq\\mathrm{Sp}(N)$. This duality has been studied for vector models, $\\mathrm{SO}(N)$ and $\\mathrm{Sp}(N)$ gauge theories, as well as some random matrix ensembles. We extend this duality to real random tensor models of arbitrary order $D$ with no symmetry under permutation of the indices and with quartic interactions. The $N$ to $-N$ duality is shown to hold graph by graph to all orders in perturbation theory for the partition function, the free energy and the connected two-point function.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Duality of orthogonal and symplectic random tensor models\",\"authors\":\"Razvan Gurau, Hannes Keppler\",\"doi\":\"10.4171/aihpd/177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The groups $\\\\mathrm{O}(N)$ and $\\\\mathrm{Sp}(N)$ are related by an analytic continuation to negative values of $N$, $\\\\mathrm{O}(-N)\\\\simeq\\\\mathrm{Sp}(N)$. This duality has been studied for vector models, $\\\\mathrm{SO}(N)$ and $\\\\mathrm{Sp}(N)$ gauge theories, as well as some random matrix ensembles. We extend this duality to real random tensor models of arbitrary order $D$ with no symmetry under permutation of the indices and with quartic interactions. The $N$ to $-N$ duality is shown to hold graph by graph to all orders in perturbation theory for the partition function, the free energy and the connected two-point function.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/aihpd/177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/aihpd/177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 2

摘要

组$\mathrm{O}(N)$和$\mathrm{Sp}(N)$通过解析延拓与$N$, $\mathrm{O}(-N)\simeq\mathrm{Sp}(N)$的负值相关联。这种对偶性已经研究了向量模型,$\mathrm{SO}(N)$和$\mathrm{Sp}(N)$规范理论,以及一些随机矩阵系综。我们将这种对偶性推广到具有四次相互作用且指标置换下不对称的任意阶的真实随机张量模型$D$。在摄动理论中,对于配分函数、自由能和连通两点函数,$N$到$-N$的对偶性可以一个图接一个图地保持到所有阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Duality of orthogonal and symplectic random tensor models
The groups $\mathrm{O}(N)$ and $\mathrm{Sp}(N)$ are related by an analytic continuation to negative values of $N$, $\mathrm{O}(-N)\simeq\mathrm{Sp}(N)$. This duality has been studied for vector models, $\mathrm{SO}(N)$ and $\mathrm{Sp}(N)$ gauge theories, as well as some random matrix ensembles. We extend this duality to real random tensor models of arbitrary order $D$ with no symmetry under permutation of the indices and with quartic interactions. The $N$ to $-N$ duality is shown to hold graph by graph to all orders in perturbation theory for the partition function, the free energy and the connected two-point function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信