半椭圆拉普拉斯和扭迹公式

IF 0.8 4区 数学 Q2 MATHEMATICS
Bingxiao Liu
{"title":"半椭圆拉普拉斯和扭迹公式","authors":"Bingxiao Liu","doi":"10.5802/aif.3566","DOIUrl":null,"url":null,"abstract":"We give an explicit geometric formula for the twisted orbital integrals using the method of the hypoelliptic Laplacian developed by Bismut. Combining with the twisted trace formula, we can evaluate the equivariant trace of the heat operators of the Laplacians on a compact locally symmetric space. In particular, we revisit the equivariant local index theorems and twisted L 2 -torsions for locally symmetric spaces.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":"42 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypoelliptic Laplacian and twisted trace formula\",\"authors\":\"Bingxiao Liu\",\"doi\":\"10.5802/aif.3566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an explicit geometric formula for the twisted orbital integrals using the method of the hypoelliptic Laplacian developed by Bismut. Combining with the twisted trace formula, we can evaluate the equivariant trace of the heat operators of the Laplacians on a compact locally symmetric space. In particular, we revisit the equivariant local index theorems and twisted L 2 -torsions for locally symmetric spaces.\",\"PeriodicalId\":50781,\"journal\":{\"name\":\"Annales De L Institut Fourier\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Fourier\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/aif.3566\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Fourier","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/aif.3566","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用Bismut提出的准椭圆拉普拉斯方法,给出了扭曲轨道积分的显式几何公式。结合扭曲迹公式,我们可以求出拉普拉斯热算子在紧致局部对称空间上的等变迹。特别地,我们重新讨论了局部对称空间的等变局部指标定理和扭曲l2 -扭转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypoelliptic Laplacian and twisted trace formula
We give an explicit geometric formula for the twisted orbital integrals using the method of the hypoelliptic Laplacian developed by Bismut. Combining with the twisted trace formula, we can evaluate the equivariant trace of the heat operators of the Laplacians on a compact locally symmetric space. In particular, we revisit the equivariant local index theorems and twisted L 2 -torsions for locally symmetric spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
92
审稿时长
1 months
期刊介绍: The Annales de l’Institut Fourier aim at publishing original papers of a high level in all fields of mathematics, either in English or in French. The Editorial Board encourages submission of articles containing an original and important result, or presenting a new proof of a central result in a domain of mathematics. Also, the Annales de l’Institut Fourier being a general purpose journal, highly specialized articles can only be accepted if their exposition makes them accessible to a larger audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信