Ahmed Alsharief, Xili Duan, Anand Yethiraj, Yuri Muzychka
{"title":"弯曲超疏水表面的润湿性对油水泰勒-库埃特流减阻的影响","authors":"Ahmed Alsharief, Xili Duan, Anand Yethiraj, Yuri Muzychka","doi":"10.1115/1.4063435","DOIUrl":null,"url":null,"abstract":"Abstract This study examines the effects of surface wettability on the drag-reducing performance of three hydrophobic coatings, namely, flouropel coating (FPC-800M), superhydrophobic binary coating (SHBC), and ultra-ever dry (UED)—when applied to curved aluminum surfaces. The wettability and flow characteristics were characterized using three liquids of different viscosities: de-ionized water and silicone oils of 5 and 10 cSt. Static and dynamic contact angles on the surfaces were measured, and the drag reduction was evaluated using a Taylor–Couette flow cell in a rheometer. The static contact angle (SCA) measurements indicated that the coated surfaces were superhydrophobic for water, with a maximum static contact angle of 158 deg, but oleophilic for the 10 cSt silicone oil, with a static contact angle of 13 deg. The rheometer measurements using water showed a maximum drag reduction of 18% for the UED-coated surfaces. Interestingly, the oleophilic surfaces (which have low SCA) showed a maximum drag reduction of 6% and 7% in the silicone oils. The observed drag reduction is due to an increase in the plastron thickness, which is caused by an increase in the Reynolds number and dynamic pressure coupled with a decrease in the static pressure normal to the superhydrophobic wall.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wettability Effects of Curved Superhydrophobic Surfaces On Drag Reduction in Taylor-Couette Flows of Water and Oil\",\"authors\":\"Ahmed Alsharief, Xili Duan, Anand Yethiraj, Yuri Muzychka\",\"doi\":\"10.1115/1.4063435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study examines the effects of surface wettability on the drag-reducing performance of three hydrophobic coatings, namely, flouropel coating (FPC-800M), superhydrophobic binary coating (SHBC), and ultra-ever dry (UED)—when applied to curved aluminum surfaces. The wettability and flow characteristics were characterized using three liquids of different viscosities: de-ionized water and silicone oils of 5 and 10 cSt. Static and dynamic contact angles on the surfaces were measured, and the drag reduction was evaluated using a Taylor–Couette flow cell in a rheometer. The static contact angle (SCA) measurements indicated that the coated surfaces were superhydrophobic for water, with a maximum static contact angle of 158 deg, but oleophilic for the 10 cSt silicone oil, with a static contact angle of 13 deg. The rheometer measurements using water showed a maximum drag reduction of 18% for the UED-coated surfaces. Interestingly, the oleophilic surfaces (which have low SCA) showed a maximum drag reduction of 6% and 7% in the silicone oils. The observed drag reduction is due to an increase in the plastron thickness, which is caused by an increase in the Reynolds number and dynamic pressure coupled with a decrease in the static pressure normal to the superhydrophobic wall.\",\"PeriodicalId\":54833,\"journal\":{\"name\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063435\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063435","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Wettability Effects of Curved Superhydrophobic Surfaces On Drag Reduction in Taylor-Couette Flows of Water and Oil
Abstract This study examines the effects of surface wettability on the drag-reducing performance of three hydrophobic coatings, namely, flouropel coating (FPC-800M), superhydrophobic binary coating (SHBC), and ultra-ever dry (UED)—when applied to curved aluminum surfaces. The wettability and flow characteristics were characterized using three liquids of different viscosities: de-ionized water and silicone oils of 5 and 10 cSt. Static and dynamic contact angles on the surfaces were measured, and the drag reduction was evaluated using a Taylor–Couette flow cell in a rheometer. The static contact angle (SCA) measurements indicated that the coated surfaces were superhydrophobic for water, with a maximum static contact angle of 158 deg, but oleophilic for the 10 cSt silicone oil, with a static contact angle of 13 deg. The rheometer measurements using water showed a maximum drag reduction of 18% for the UED-coated surfaces. Interestingly, the oleophilic surfaces (which have low SCA) showed a maximum drag reduction of 6% and 7% in the silicone oils. The observed drag reduction is due to an increase in the plastron thickness, which is caused by an increase in the Reynolds number and dynamic pressure coupled with a decrease in the static pressure normal to the superhydrophobic wall.
期刊介绍:
Multiphase flows; Pumps; Aerodynamics; Boundary layers; Bubbly flows; Cavitation; Compressible flows; Convective heat/mass transfer as it is affected by fluid flow; Duct and pipe flows; Free shear layers; Flows in biological systems; Fluid-structure interaction; Fluid transients and wave motion; Jets; Naval hydrodynamics; Sprays; Stability and transition; Turbulence wakes microfluidics and other fundamental/applied fluid mechanical phenomena and processes