{"title":"基于RGB彩色条纹投影的高动态三维测量方法研究","authors":"Fu Ling","doi":"10.1051/jeos/2023040","DOIUrl":null,"url":null,"abstract":"Metal parts with highly dynamic areas often appear in industrial production measurements. However, if the traditional fringe projection technique is used to project fringe onto the surface of these metal parts, the light energy will be excessively concentrated and the image will be saturated, resulting thus in the loss of fringe information. To effectively address the high reflectivity problem of the object under test in fringe projection, background normalized Fourier transform contouring was combined with adaptive fringe projection in this work and a new method for performing highly dynamic 3D measurements was proposed. To reduce the number of the acquired images by the camera, a monochromatic fringe of different frequencies was put into the RGB channel to make color composite fringe, and then a color camera was used to acquire the deformed color composite fringe map. The images acquired by the color camera were then separated into three channels to obtain three deformed stripe maps. The crosstalk was also removed from these three images, and the 3D shape of the object was reconstructed by carrying out Fourier transform contouring with background normalization. From our experiments, it was demonstrated that the root mean square error of the proposed method can reach 0.191 mm, whereas, unlike the traditional methods, the developed method requires four images.","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":"273 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on highly dynamic 3D measurement method based on RGB color fringe projection\",\"authors\":\"Fu Ling\",\"doi\":\"10.1051/jeos/2023040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal parts with highly dynamic areas often appear in industrial production measurements. However, if the traditional fringe projection technique is used to project fringe onto the surface of these metal parts, the light energy will be excessively concentrated and the image will be saturated, resulting thus in the loss of fringe information. To effectively address the high reflectivity problem of the object under test in fringe projection, background normalized Fourier transform contouring was combined with adaptive fringe projection in this work and a new method for performing highly dynamic 3D measurements was proposed. To reduce the number of the acquired images by the camera, a monochromatic fringe of different frequencies was put into the RGB channel to make color composite fringe, and then a color camera was used to acquire the deformed color composite fringe map. The images acquired by the color camera were then separated into three channels to obtain three deformed stripe maps. The crosstalk was also removed from these three images, and the 3D shape of the object was reconstructed by carrying out Fourier transform contouring with background normalization. From our experiments, it was demonstrated that the root mean square error of the proposed method can reach 0.191 mm, whereas, unlike the traditional methods, the developed method requires four images.\",\"PeriodicalId\":674,\"journal\":{\"name\":\"Journal of the European Optical Society-Rapid Publications\",\"volume\":\"273 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Optical Society-Rapid Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/jeos/2023040\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/jeos/2023040","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Research on highly dynamic 3D measurement method based on RGB color fringe projection
Metal parts with highly dynamic areas often appear in industrial production measurements. However, if the traditional fringe projection technique is used to project fringe onto the surface of these metal parts, the light energy will be excessively concentrated and the image will be saturated, resulting thus in the loss of fringe information. To effectively address the high reflectivity problem of the object under test in fringe projection, background normalized Fourier transform contouring was combined with adaptive fringe projection in this work and a new method for performing highly dynamic 3D measurements was proposed. To reduce the number of the acquired images by the camera, a monochromatic fringe of different frequencies was put into the RGB channel to make color composite fringe, and then a color camera was used to acquire the deformed color composite fringe map. The images acquired by the color camera were then separated into three channels to obtain three deformed stripe maps. The crosstalk was also removed from these three images, and the 3D shape of the object was reconstructed by carrying out Fourier transform contouring with background normalization. From our experiments, it was demonstrated that the root mean square error of the proposed method can reach 0.191 mm, whereas, unlike the traditional methods, the developed method requires four images.
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.