东安格利亚大学数字人类参加2023年GENEA挑战

Jonathan Windle, Iain Matthews, Ben Milner, Sarah Taylor
{"title":"东安格利亚大学数字人类参加2023年GENEA挑战","authors":"Jonathan Windle, Iain Matthews, Ben Milner, Sarah Taylor","doi":"10.1145/3577190.3616116","DOIUrl":null,"url":null,"abstract":"This paper describes our entry to the GENEA (Generation and Evaluation of Non-verbal Behaviour for Embodied Agents) Challenge 2023. This year’s challenge focuses on generating gestures in a dyadic setting – predicting a main-agent’s motion from the speech of both the main-agent and an interlocutor. We adapt a Transformer-XL architecture for this task by adding a cross-attention module that integrates the interlocutor’s speech with that of the main-agent. Our model is conditioned on speech audio (encoded using PASE+), text (encoded using FastText) and a speaker identity label, and is able to generate smooth and speech appropriate gestures for a given identity. We consider the GENEA Challenge user study results and present a discussion of our model strengths and where improvements can be made.","PeriodicalId":93171,"journal":{"name":"Companion Publication of the 2020 International Conference on Multimodal Interaction","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The UEA Digital Humans entry to the GENEA Challenge 2023\",\"authors\":\"Jonathan Windle, Iain Matthews, Ben Milner, Sarah Taylor\",\"doi\":\"10.1145/3577190.3616116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes our entry to the GENEA (Generation and Evaluation of Non-verbal Behaviour for Embodied Agents) Challenge 2023. This year’s challenge focuses on generating gestures in a dyadic setting – predicting a main-agent’s motion from the speech of both the main-agent and an interlocutor. We adapt a Transformer-XL architecture for this task by adding a cross-attention module that integrates the interlocutor’s speech with that of the main-agent. Our model is conditioned on speech audio (encoded using PASE+), text (encoded using FastText) and a speaker identity label, and is able to generate smooth and speech appropriate gestures for a given identity. We consider the GENEA Challenge user study results and present a discussion of our model strengths and where improvements can be made.\",\"PeriodicalId\":93171,\"journal\":{\"name\":\"Companion Publication of the 2020 International Conference on Multimodal Interaction\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Publication of the 2020 International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3577190.3616116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Publication of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577190.3616116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了我们进入GENEA(体现代理的非语言行为的生成和评估)挑战2023。今年的挑战重点是在二元环境中生成手势——从主体和对话者的讲话中预测主体的动作。我们为这个任务调整了一个Transformer-XL架构,添加了一个跨注意力模块,该模块集成了对话者和主代理的演讲。我们的模型以语音音频(使用PASE+编码)、文本(使用FastText编码)和说话者身份标签为条件,并且能够为给定的身份生成流畅且适合语音的手势。我们考虑了GENEA挑战用户研究结果,并讨论了我们的模型优势和可以改进的地方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The UEA Digital Humans entry to the GENEA Challenge 2023
This paper describes our entry to the GENEA (Generation and Evaluation of Non-verbal Behaviour for Embodied Agents) Challenge 2023. This year’s challenge focuses on generating gestures in a dyadic setting – predicting a main-agent’s motion from the speech of both the main-agent and an interlocutor. We adapt a Transformer-XL architecture for this task by adding a cross-attention module that integrates the interlocutor’s speech with that of the main-agent. Our model is conditioned on speech audio (encoded using PASE+), text (encoded using FastText) and a speaker identity label, and is able to generate smooth and speech appropriate gestures for a given identity. We consider the GENEA Challenge user study results and present a discussion of our model strengths and where improvements can be made.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信