{"title":"基于特征选择技术和k近邻分类器的超声图像肝细胞癌诊断","authors":"Fatemeh Azimi Nanvaee, Saeed Setayeshi","doi":"10.5812/hepatmon-136213","DOIUrl":null,"url":null,"abstract":"Background: Liver cancer is one of the most common types of cancer, in which early detection plays a significant role in preventing progression and reducing mortality. Ultrasound is one of the methods of liver examination recommended by guidelines due to its performance in detecting focal liver lesions. These small lesions may be missed in the early stages or diagnosed only when the prognosis is poor. Objectives: This study aimed to implement the best classification model for two liver stages by extracting optimal feature subsets to be used in computer-aided diagnosis systems (CAD). Methods: The model classifies the liver into two stages using B-mode ultrasound images of the liver. It involves extracting statistical texture features utilizing Discrete Wavelet Transform (DWT) and Gray Level Co-Occurrence Matrix (GLCM). This study applied two feature selection methods: T-test and Sequential Forward Floating Selection (SFFS). The subset of selected features was presented to the k-nearest neighbor classifier for incorporation into a CAD system. Results: The accuracy, sensitivity, and specificity of the k-NN classifier were 98.75%, 98.82%, and 99.1%, respectively. Conclusions: Image analysis approaches were successfully performed to extract and select useful features. Therefore, this model is recommended for classifying two liver stages, normal and HCC.","PeriodicalId":12895,"journal":{"name":"Hepatitis Monthly","volume":"19 8","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hepatocellular Carcinoma Diagnosis Based on Ultrasound Images Using Feature Selection Techniques and K-nearest Neighbor Classifier\",\"authors\":\"Fatemeh Azimi Nanvaee, Saeed Setayeshi\",\"doi\":\"10.5812/hepatmon-136213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Liver cancer is one of the most common types of cancer, in which early detection plays a significant role in preventing progression and reducing mortality. Ultrasound is one of the methods of liver examination recommended by guidelines due to its performance in detecting focal liver lesions. These small lesions may be missed in the early stages or diagnosed only when the prognosis is poor. Objectives: This study aimed to implement the best classification model for two liver stages by extracting optimal feature subsets to be used in computer-aided diagnosis systems (CAD). Methods: The model classifies the liver into two stages using B-mode ultrasound images of the liver. It involves extracting statistical texture features utilizing Discrete Wavelet Transform (DWT) and Gray Level Co-Occurrence Matrix (GLCM). This study applied two feature selection methods: T-test and Sequential Forward Floating Selection (SFFS). The subset of selected features was presented to the k-nearest neighbor classifier for incorporation into a CAD system. Results: The accuracy, sensitivity, and specificity of the k-NN classifier were 98.75%, 98.82%, and 99.1%, respectively. Conclusions: Image analysis approaches were successfully performed to extract and select useful features. Therefore, this model is recommended for classifying two liver stages, normal and HCC.\",\"PeriodicalId\":12895,\"journal\":{\"name\":\"Hepatitis Monthly\",\"volume\":\"19 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hepatitis Monthly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5812/hepatmon-136213\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hepatitis Monthly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5812/hepatmon-136213","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Hepatocellular Carcinoma Diagnosis Based on Ultrasound Images Using Feature Selection Techniques and K-nearest Neighbor Classifier
Background: Liver cancer is one of the most common types of cancer, in which early detection plays a significant role in preventing progression and reducing mortality. Ultrasound is one of the methods of liver examination recommended by guidelines due to its performance in detecting focal liver lesions. These small lesions may be missed in the early stages or diagnosed only when the prognosis is poor. Objectives: This study aimed to implement the best classification model for two liver stages by extracting optimal feature subsets to be used in computer-aided diagnosis systems (CAD). Methods: The model classifies the liver into two stages using B-mode ultrasound images of the liver. It involves extracting statistical texture features utilizing Discrete Wavelet Transform (DWT) and Gray Level Co-Occurrence Matrix (GLCM). This study applied two feature selection methods: T-test and Sequential Forward Floating Selection (SFFS). The subset of selected features was presented to the k-nearest neighbor classifier for incorporation into a CAD system. Results: The accuracy, sensitivity, and specificity of the k-NN classifier were 98.75%, 98.82%, and 99.1%, respectively. Conclusions: Image analysis approaches were successfully performed to extract and select useful features. Therefore, this model is recommended for classifying two liver stages, normal and HCC.
期刊介绍:
Hepatitis Monthly is a clinical journal which is informative to all practitioners like gastroenterologists, hepatologists and infectious disease specialists and internists. This authoritative clinical journal was founded by Professor Seyed-Moayed Alavian in 2002. The Journal context is devoted to the particular compilation of the latest worldwide and interdisciplinary approach and findings including original manuscripts, meta-analyses and reviews, health economic papers, debates and consensus statements of the clinical relevance of hepatological field especially liver diseases. In addition, consensus evidential reports not only highlight the new observations, original research, and results accompanied by innovative treatments and all the other relevant topics but also include highlighting disease mechanisms or important clinical observations and letters on articles published in the journal.