随机纳什对策稳定性价格估计的随机逼近

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Afrooz Jalilzadeh, Farzad Yousefian, Mohammadjavad Ebrahimi
{"title":"随机纳什对策稳定性价格估计的随机逼近","authors":"Afrooz Jalilzadeh, Farzad Yousefian, Mohammadjavad Ebrahimi","doi":"10.1145/3632525","DOIUrl":null,"url":null,"abstract":"The goal in this paper is to approximate the Price of Stability (PoS) in stochastic Nash games using stochastic approximation (SA) schemes. PoS is amongst the most popular metrics in game theory and provides an avenue for estimating the efficiency of Nash games. In particular, knowing the value of PoS can help with designing efficient networked systems, including transportation networks and power market mechanisms. Motivated by the absence of efficient methods for computing the PoS, first we consider stochastic optimization problems with a nonsmooth and merely convex objective function and a merely monotone stochastic variational inequality (SVI) constraint. This problem appears in the numerator of the PoS ratio. We develop a randomized block-coordinate stochastic extra-(sub)gradient method where we employ a novel iterative penalization scheme to account for the mapping of the SVI in each of the two gradient updates of the algorithm. We obtain an iteration complexity of the order ϵ − 4 that appears to be best known result for this class of constrained stochastic optimization problems, where ϵ denotes an arbitrary bound on suitably defined infeasibility and suboptimality metrics. Second, we develop an SA-based scheme for approximating the PoS and derive lower and upper bounds on the approximation error. To validate the theoretical findings, we provide preliminary simulation results on a networked stochastic Nash Cournot competition.","PeriodicalId":50943,"journal":{"name":"ACM Transactions on Modeling and Computer Simulation","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stochastic Approximation for Estimating the Price of Stability in Stochastic Nash Games\",\"authors\":\"Afrooz Jalilzadeh, Farzad Yousefian, Mohammadjavad Ebrahimi\",\"doi\":\"10.1145/3632525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal in this paper is to approximate the Price of Stability (PoS) in stochastic Nash games using stochastic approximation (SA) schemes. PoS is amongst the most popular metrics in game theory and provides an avenue for estimating the efficiency of Nash games. In particular, knowing the value of PoS can help with designing efficient networked systems, including transportation networks and power market mechanisms. Motivated by the absence of efficient methods for computing the PoS, first we consider stochastic optimization problems with a nonsmooth and merely convex objective function and a merely monotone stochastic variational inequality (SVI) constraint. This problem appears in the numerator of the PoS ratio. We develop a randomized block-coordinate stochastic extra-(sub)gradient method where we employ a novel iterative penalization scheme to account for the mapping of the SVI in each of the two gradient updates of the algorithm. We obtain an iteration complexity of the order ϵ − 4 that appears to be best known result for this class of constrained stochastic optimization problems, where ϵ denotes an arbitrary bound on suitably defined infeasibility and suboptimality metrics. Second, we develop an SA-based scheme for approximating the PoS and derive lower and upper bounds on the approximation error. To validate the theoretical findings, we provide preliminary simulation results on a networked stochastic Nash Cournot competition.\",\"PeriodicalId\":50943,\"journal\":{\"name\":\"ACM Transactions on Modeling and Computer Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Modeling and Computer Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3632525\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Modeling and Computer Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3632525","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

摘要

本文的目标是利用随机逼近(SA)方案来近似随机纳什博弈中的稳定价格(PoS)。PoS是博弈论中最流行的指标之一,为估计纳什博弈的效率提供了一个途径。特别是,了解PoS的价值可以帮助设计高效的网络系统,包括交通网络和电力市场机制。由于缺乏有效的PoS计算方法,我们首先考虑具有非光滑、仅凸目标函数和仅单调随机变分不等式(SVI)约束的随机优化问题。这个问题出现在PoS比例的分子上。我们开发了一种随机块坐标随机额外(次)梯度方法,其中我们采用了一种新的迭代惩罚方案来解释该算法的两次梯度更新中SVI的映射。我们得到了阶λ−4的迭代复杂度,这似乎是这类约束随机优化问题最著名的结果,其中λ表示适当定义的不可行性和次优性度量的任意界。其次,我们开发了一种基于sa的近似方案,并推导了近似误差的下界和上界。为了验证理论发现,我们提供了一个网络随机纳什古诺竞争的初步模拟结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Approximation for Estimating the Price of Stability in Stochastic Nash Games
The goal in this paper is to approximate the Price of Stability (PoS) in stochastic Nash games using stochastic approximation (SA) schemes. PoS is amongst the most popular metrics in game theory and provides an avenue for estimating the efficiency of Nash games. In particular, knowing the value of PoS can help with designing efficient networked systems, including transportation networks and power market mechanisms. Motivated by the absence of efficient methods for computing the PoS, first we consider stochastic optimization problems with a nonsmooth and merely convex objective function and a merely monotone stochastic variational inequality (SVI) constraint. This problem appears in the numerator of the PoS ratio. We develop a randomized block-coordinate stochastic extra-(sub)gradient method where we employ a novel iterative penalization scheme to account for the mapping of the SVI in each of the two gradient updates of the algorithm. We obtain an iteration complexity of the order ϵ − 4 that appears to be best known result for this class of constrained stochastic optimization problems, where ϵ denotes an arbitrary bound on suitably defined infeasibility and suboptimality metrics. Second, we develop an SA-based scheme for approximating the PoS and derive lower and upper bounds on the approximation error. To validate the theoretical findings, we provide preliminary simulation results on a networked stochastic Nash Cournot competition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Modeling and Computer Simulation
ACM Transactions on Modeling and Computer Simulation 工程技术-计算机:跨学科应用
CiteScore
2.50
自引率
22.20%
发文量
29
审稿时长
>12 weeks
期刊介绍: The ACM Transactions on Modeling and Computer Simulation (TOMACS) provides a single archival source for the publication of high-quality research and developmental results referring to all phases of the modeling and simulation life cycle. The subjects of emphasis are discrete event simulation, combined discrete and continuous simulation, as well as Monte Carlo methods. The use of simulation techniques is pervasive, extending to virtually all the sciences. TOMACS serves to enhance the understanding, improve the practice, and increase the utilization of computer simulation. Submissions should contribute to the realization of these objectives, and papers treating applications should stress their contributions vis-á-vis these objectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信