用高频方法估计扩散过程中的周期信号

IF 0.8 Q3 STATISTICS & PROBABILITY
Getut Pramesti, Ristu Saptono
{"title":"用高频方法估计扩散过程中的周期信号","authors":"Getut Pramesti, Ristu Saptono","doi":"10.1515/mcma-2023-2020","DOIUrl":null,"url":null,"abstract":"Abstract The estimation of the frequency component is very interesting to study, considering its unique nature when these parameters are together in their amplitude. The periodicity of the frequency components is also thought to affect the convergence of these parameters. In this paper, we consider the problem of estimating the frequency component of a periodic continuous-time sinusoidal signal. Under the high-frequency sampling setting, we provide the frequency components’ consistency and asymptotic normality. It is observed that the convergence rate of the continuous-time sinusoidal signal of the diffusion process is the same as the continuous-time sinusoidal signal of the Ornstein–Uhlenbeck process, which is mentioned in [G. Pramesti, Parameter least-squares estimation for time-inhomogeneous Ornstein–Uhlenbeck process, Monte Carlo Methods Appl. 29 (2023), 1, 1–32]. The result of this study deduces that the convergence rate of the frequency is the same as long as the signal is periodic. In this case, the existence of the rate of reversion does not affect the convergence rate of the frequency components. Further, the result of the study, that is, the convergence rate of the frequency is <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msqrt> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>⁢</m:mo> <m:mi>h</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mn>3</m:mn> </m:msup> </m:msqrt> </m:math> \\sqrt{(nh)^{3}} , also revised the previous one in [G. Pramesti, The least-squares estimator of sinusoidal signal of diffusion process for discrete observations, J. Math. Comput. Sci. 11 (2021), 5, 6433–6443], which mentioned <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msqrt> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>⁢</m:mo> <m:mi>h</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mn>3</m:mn> </m:msup> <m:mo>⁢</m:mo> <m:mi>h</m:mi> </m:mrow> </m:msqrt> </m:math> \\sqrt{(nh)^{3}h} . The proposed approach is demonstrated with a ten-minute sampling rate of real data on the energy consumption of light fixtures in one Belgium household.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the estimation of periodic signals in the diffusion process using a high-frequency scheme\",\"authors\":\"Getut Pramesti, Ristu Saptono\",\"doi\":\"10.1515/mcma-2023-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The estimation of the frequency component is very interesting to study, considering its unique nature when these parameters are together in their amplitude. The periodicity of the frequency components is also thought to affect the convergence of these parameters. In this paper, we consider the problem of estimating the frequency component of a periodic continuous-time sinusoidal signal. Under the high-frequency sampling setting, we provide the frequency components’ consistency and asymptotic normality. It is observed that the convergence rate of the continuous-time sinusoidal signal of the diffusion process is the same as the continuous-time sinusoidal signal of the Ornstein–Uhlenbeck process, which is mentioned in [G. Pramesti, Parameter least-squares estimation for time-inhomogeneous Ornstein–Uhlenbeck process, Monte Carlo Methods Appl. 29 (2023), 1, 1–32]. The result of this study deduces that the convergence rate of the frequency is the same as long as the signal is periodic. In this case, the existence of the rate of reversion does not affect the convergence rate of the frequency components. Further, the result of the study, that is, the convergence rate of the frequency is <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msqrt> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>⁢</m:mo> <m:mi>h</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mn>3</m:mn> </m:msup> </m:msqrt> </m:math> \\\\sqrt{(nh)^{3}} , also revised the previous one in [G. Pramesti, The least-squares estimator of sinusoidal signal of diffusion process for discrete observations, J. Math. Comput. Sci. 11 (2021), 5, 6433–6443], which mentioned <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msqrt> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>⁢</m:mo> <m:mi>h</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mn>3</m:mn> </m:msup> <m:mo>⁢</m:mo> <m:mi>h</m:mi> </m:mrow> </m:msqrt> </m:math> \\\\sqrt{(nh)^{3}h} . The proposed approach is demonstrated with a ten-minute sampling rate of real data on the energy consumption of light fixtures in one Belgium household.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2023-2020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2023-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

频率分量的估计是一个非常有趣的研究,因为当这些参数在其幅值中同时存在时,频率分量的估计具有独特的性质。频率分量的周期性也被认为会影响这些参数的收敛性。本文研究了周期连续正弦信号的频率分量估计问题。在高频采样设置下,给出了频率分量的一致性和渐近正态性。可以观察到扩散过程的连续时间正弦信号的收敛速度与Ornstein-Uhlenbeck过程的连续时间正弦信号的收敛速度相同,这在[G]中提到。[2]张志强,时间非齐次Ornstein-Uhlenbeck过程参数最小二乘估计,蒙特卡罗方法应用,29(2023),1 - 32。本文的研究结果表明,只要信号是周期性的,频率的收敛速度是相同的。在这种情况下,反转速率的存在并不影响频率分量的收敛速率。进一步,研究的结果,即频率的收敛速率为(n¹h) 3 \sqrt{(nh)^{3}},也修正了先前[G]中的结果。李志强,离散观测扩散过程中正弦信号的最小二乘估计,数学学报。第一版。科学通报,11(2021),5,6433-6443],其中提到了(n减去h) 3减去h \sqrt{(nh)^{3}h}。该方法通过对比利时一户家庭灯具能耗的10分钟采样率的实际数据进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the estimation of periodic signals in the diffusion process using a high-frequency scheme
Abstract The estimation of the frequency component is very interesting to study, considering its unique nature when these parameters are together in their amplitude. The periodicity of the frequency components is also thought to affect the convergence of these parameters. In this paper, we consider the problem of estimating the frequency component of a periodic continuous-time sinusoidal signal. Under the high-frequency sampling setting, we provide the frequency components’ consistency and asymptotic normality. It is observed that the convergence rate of the continuous-time sinusoidal signal of the diffusion process is the same as the continuous-time sinusoidal signal of the Ornstein–Uhlenbeck process, which is mentioned in [G. Pramesti, Parameter least-squares estimation for time-inhomogeneous Ornstein–Uhlenbeck process, Monte Carlo Methods Appl. 29 (2023), 1, 1–32]. The result of this study deduces that the convergence rate of the frequency is the same as long as the signal is periodic. In this case, the existence of the rate of reversion does not affect the convergence rate of the frequency components. Further, the result of the study, that is, the convergence rate of the frequency is ( n h ) 3 \sqrt{(nh)^{3}} , also revised the previous one in [G. Pramesti, The least-squares estimator of sinusoidal signal of diffusion process for discrete observations, J. Math. Comput. Sci. 11 (2021), 5, 6433–6443], which mentioned ( n h ) 3 h \sqrt{(nh)^{3}h} . The proposed approach is demonstrated with a ten-minute sampling rate of real data on the energy consumption of light fixtures in one Belgium household.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信