局部Lipschitz条件下双因素随机波动模型的强逼近

IF 0.8 Q3 STATISTICS & PROBABILITY
Emmanuel Coffie
{"title":"局部Lipschitz条件下双因素随机波动模型的强逼近","authors":"Emmanuel Coffie","doi":"10.1515/mcma-2023-2021","DOIUrl":null,"url":null,"abstract":"Abstract We establish theoretical properties of the solution to a two-variance-driven interest rate model with super-linear coefficient terms. Since this model is not tractable analytically, we construct an implementable numerical method to approximate it and prove the finite-time strong convergence theory under the local Lipschitz condition. Finally, we provide simulation examples to demonstrate the theoretical results.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong approximation of a two-factor stochastic volatility model under local Lipschitz condition\",\"authors\":\"Emmanuel Coffie\",\"doi\":\"10.1515/mcma-2023-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We establish theoretical properties of the solution to a two-variance-driven interest rate model with super-linear coefficient terms. Since this model is not tractable analytically, we construct an implementable numerical method to approximate it and prove the finite-time strong convergence theory under the local Lipschitz condition. Finally, we provide simulation examples to demonstrate the theoretical results.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2023-2021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2023-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要建立了具有超线性系数项的双方差驱动利率模型解的理论性质。由于该模型不可解析处理,我们构造了一种可实现的数值逼近方法,并证明了局部Lipschitz条件下的有限时间强收敛理论。最后,通过仿真实例对理论结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong approximation of a two-factor stochastic volatility model under local Lipschitz condition
Abstract We establish theoretical properties of the solution to a two-variance-driven interest rate model with super-linear coefficient terms. Since this model is not tractable analytically, we construct an implementable numerical method to approximate it and prove the finite-time strong convergence theory under the local Lipschitz condition. Finally, we provide simulation examples to demonstrate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信