{"title":"局部Lipschitz条件下双因素随机波动模型的强逼近","authors":"Emmanuel Coffie","doi":"10.1515/mcma-2023-2021","DOIUrl":null,"url":null,"abstract":"Abstract We establish theoretical properties of the solution to a two-variance-driven interest rate model with super-linear coefficient terms. Since this model is not tractable analytically, we construct an implementable numerical method to approximate it and prove the finite-time strong convergence theory under the local Lipschitz condition. Finally, we provide simulation examples to demonstrate the theoretical results.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong approximation of a two-factor stochastic volatility model under local Lipschitz condition\",\"authors\":\"Emmanuel Coffie\",\"doi\":\"10.1515/mcma-2023-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We establish theoretical properties of the solution to a two-variance-driven interest rate model with super-linear coefficient terms. Since this model is not tractable analytically, we construct an implementable numerical method to approximate it and prove the finite-time strong convergence theory under the local Lipschitz condition. Finally, we provide simulation examples to demonstrate the theoretical results.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2023-2021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2023-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Strong approximation of a two-factor stochastic volatility model under local Lipschitz condition
Abstract We establish theoretical properties of the solution to a two-variance-driven interest rate model with super-linear coefficient terms. Since this model is not tractable analytically, we construct an implementable numerical method to approximate it and prove the finite-time strong convergence theory under the local Lipschitz condition. Finally, we provide simulation examples to demonstrate the theoretical results.