{"title":"使用随机森林的预测结果","authors":"Agung Bia Alpiansah, Yudi Ramdhani","doi":"10.32520/stmsi.v12i3.3125","DOIUrl":null,"url":null,"abstract":"Obesitas remaja di Indonesia sedang meningkat, karena kebiasaan makan yang buruk dan gaya hidup yang kurang gerak. Obesitas meningkatkan risiko masalah kesehatan yang serius seperti penyakit jantung, stroke, diabetes, dan lain-lain yang memerlukan tindakan segera. Obesitas berkembang ketika jumlah kalori yang dikonsumsi melebihi jumlah kalori yang dibakar. Obesitas telah menjadi masalah kesehatan masyarakat yang sangat besar di seluruh dunia. Menurut Organisasi Kesehatan Dunia, sekitar 1,9 miliar orang berusia 18 tahun ke atas mengalami kelebihan berat badan, dengan 600 juta orang mengalami obesitas. Menurut Survei Kesehatan dan Morbiditas Nasional, wanita 29,6% lebih mungkin mengalami obesitas dibandingkan pria, dibandingkan dengan 25% pria. Dataset rekam medis gagal jantung akan ditangani dalam dua tahap percobaan berdasarkan validasi. Empat algoritma klasifikasi yang berbeda, termasuk Random Forest, K-Nearest Neighbor, Decision Tree, dan Naive Bayes, akan dicoba pada langkah pertama. Untuk Testing, metode Cross Validation yang menggunakan Random Forest mengungguli empat algoritma lainnya dalam Testing algoritma. Setelah Testing, metode algoritma Random Forest menghasilkan nilai akurasi tertinggi, dan dievaluasi kembali menggunakan Split Validation dan rasio split yang bervariasi dengan Forward Selection sebagai fitu seleksi. Hanya Testing yang menggunakan metode Forward Selection mengungguli Testing yang menggunakan algoritma Random Forest.","PeriodicalId":32357,"journal":{"name":"Jurnal Sistem Informasi","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimasi Fitur dengan Forward Selection pada Estimasi Tingkat Obesitas menggunakan Random Forest\",\"authors\":\"Agung Bia Alpiansah, Yudi Ramdhani\",\"doi\":\"10.32520/stmsi.v12i3.3125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obesitas remaja di Indonesia sedang meningkat, karena kebiasaan makan yang buruk dan gaya hidup yang kurang gerak. Obesitas meningkatkan risiko masalah kesehatan yang serius seperti penyakit jantung, stroke, diabetes, dan lain-lain yang memerlukan tindakan segera. Obesitas berkembang ketika jumlah kalori yang dikonsumsi melebihi jumlah kalori yang dibakar. Obesitas telah menjadi masalah kesehatan masyarakat yang sangat besar di seluruh dunia. Menurut Organisasi Kesehatan Dunia, sekitar 1,9 miliar orang berusia 18 tahun ke atas mengalami kelebihan berat badan, dengan 600 juta orang mengalami obesitas. Menurut Survei Kesehatan dan Morbiditas Nasional, wanita 29,6% lebih mungkin mengalami obesitas dibandingkan pria, dibandingkan dengan 25% pria. Dataset rekam medis gagal jantung akan ditangani dalam dua tahap percobaan berdasarkan validasi. Empat algoritma klasifikasi yang berbeda, termasuk Random Forest, K-Nearest Neighbor, Decision Tree, dan Naive Bayes, akan dicoba pada langkah pertama. Untuk Testing, metode Cross Validation yang menggunakan Random Forest mengungguli empat algoritma lainnya dalam Testing algoritma. Setelah Testing, metode algoritma Random Forest menghasilkan nilai akurasi tertinggi, dan dievaluasi kembali menggunakan Split Validation dan rasio split yang bervariasi dengan Forward Selection sebagai fitu seleksi. Hanya Testing yang menggunakan metode Forward Selection mengungguli Testing yang menggunakan algoritma Random Forest.\",\"PeriodicalId\":32357,\"journal\":{\"name\":\"Jurnal Sistem Informasi\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Sistem Informasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32520/stmsi.v12i3.3125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sistem Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32520/stmsi.v12i3.3125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
由于不良的饮食习惯和久坐不动的生活方式,印度尼西亚的青少年肥胖正在增加。肥胖会增加心脏病、中风、糖尿病等严重健康问题的风险。当摄入的卡路里超过燃烧的卡路里时,肥胖就会增加。肥胖已成为世界范围内一个巨大的公共卫生问题。根据世界卫生组织(world health organization)的数据,大约有19亿18岁以上的人超重,6亿人肥胖。根据国家健康和发病率调查,女性29.6%的肥胖几率高于男性,而男性为25%。根据验证,将进行两阶段的测试。四种不同的分类算法,包括随机森林、K-Nearest neighbors、Decision Tree和Naive Bayes,将首次尝试。在测试中,使用随机森林的交叉验证方法超过了测试算法中的其他四种算法。测试后,随机森林算法的方法产生了最高的准确性值,并在fitu选择中使用了分级验证和分级比例的不同前置选择进行重新评估。只有通过前选择方法的测试才会超过使用随机森林算法的测试。
Optimasi Fitur dengan Forward Selection pada Estimasi Tingkat Obesitas menggunakan Random Forest
Obesitas remaja di Indonesia sedang meningkat, karena kebiasaan makan yang buruk dan gaya hidup yang kurang gerak. Obesitas meningkatkan risiko masalah kesehatan yang serius seperti penyakit jantung, stroke, diabetes, dan lain-lain yang memerlukan tindakan segera. Obesitas berkembang ketika jumlah kalori yang dikonsumsi melebihi jumlah kalori yang dibakar. Obesitas telah menjadi masalah kesehatan masyarakat yang sangat besar di seluruh dunia. Menurut Organisasi Kesehatan Dunia, sekitar 1,9 miliar orang berusia 18 tahun ke atas mengalami kelebihan berat badan, dengan 600 juta orang mengalami obesitas. Menurut Survei Kesehatan dan Morbiditas Nasional, wanita 29,6% lebih mungkin mengalami obesitas dibandingkan pria, dibandingkan dengan 25% pria. Dataset rekam medis gagal jantung akan ditangani dalam dua tahap percobaan berdasarkan validasi. Empat algoritma klasifikasi yang berbeda, termasuk Random Forest, K-Nearest Neighbor, Decision Tree, dan Naive Bayes, akan dicoba pada langkah pertama. Untuk Testing, metode Cross Validation yang menggunakan Random Forest mengungguli empat algoritma lainnya dalam Testing algoritma. Setelah Testing, metode algoritma Random Forest menghasilkan nilai akurasi tertinggi, dan dievaluasi kembali menggunakan Split Validation dan rasio split yang bervariasi dengan Forward Selection sebagai fitu seleksi. Hanya Testing yang menggunakan metode Forward Selection mengungguli Testing yang menggunakan algoritma Random Forest.