{"title":"l2 -教科书Seq2Seq语言模型的层次归纳偏差研究","authors":"Euhee Kim, Keonwoo Koo","doi":"10.17154/kjal.2023.9.39.3.57","DOIUrl":null,"url":null,"abstract":"The relations between words in natural language are governed by hierarchical structures rather than linear ordering. In recent years, artificial neural network-based language models (LMs) have demonstrated impressive achievements in tasks related to sentence processing. These models benefit from pre-training, which helps enhance their performance. However, our comprehension of the precise syntactic knowledge acquired by these models during sentence processing remains somewhat restricted. This paper examines whether the L2-textbook Seq2Seq (Sequence-to-Sequence) language model processes or transforms sentences based on a syntactic hierarchical inductive bias or a linear inductive bias through transformation tasks. We replicate several previous experiments and explore our model’s capacity to exhibit human-like behavior. Our experiments provide evidence that, in transformation tasks, our pre-trained L2-textbook LSTM-based Seq2Seq model performed based on the linear rule rather than hierarchical rule. In essence, our model showcased a linear inductive bias, consistent with the Scratch-Seq2Seq model.","PeriodicalId":114013,"journal":{"name":"Korean Journal of Applied Linguistics","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating a Hierarchical Inductive Bias in L2-textbook Seq2Seq Language Model\",\"authors\":\"Euhee Kim, Keonwoo Koo\",\"doi\":\"10.17154/kjal.2023.9.39.3.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relations between words in natural language are governed by hierarchical structures rather than linear ordering. In recent years, artificial neural network-based language models (LMs) have demonstrated impressive achievements in tasks related to sentence processing. These models benefit from pre-training, which helps enhance their performance. However, our comprehension of the precise syntactic knowledge acquired by these models during sentence processing remains somewhat restricted. This paper examines whether the L2-textbook Seq2Seq (Sequence-to-Sequence) language model processes or transforms sentences based on a syntactic hierarchical inductive bias or a linear inductive bias through transformation tasks. We replicate several previous experiments and explore our model’s capacity to exhibit human-like behavior. Our experiments provide evidence that, in transformation tasks, our pre-trained L2-textbook LSTM-based Seq2Seq model performed based on the linear rule rather than hierarchical rule. In essence, our model showcased a linear inductive bias, consistent with the Scratch-Seq2Seq model.\",\"PeriodicalId\":114013,\"journal\":{\"name\":\"Korean Journal of Applied Linguistics\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Applied Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17154/kjal.2023.9.39.3.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Applied Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17154/kjal.2023.9.39.3.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigating a Hierarchical Inductive Bias in L2-textbook Seq2Seq Language Model
The relations between words in natural language are governed by hierarchical structures rather than linear ordering. In recent years, artificial neural network-based language models (LMs) have demonstrated impressive achievements in tasks related to sentence processing. These models benefit from pre-training, which helps enhance their performance. However, our comprehension of the precise syntactic knowledge acquired by these models during sentence processing remains somewhat restricted. This paper examines whether the L2-textbook Seq2Seq (Sequence-to-Sequence) language model processes or transforms sentences based on a syntactic hierarchical inductive bias or a linear inductive bias through transformation tasks. We replicate several previous experiments and explore our model’s capacity to exhibit human-like behavior. Our experiments provide evidence that, in transformation tasks, our pre-trained L2-textbook LSTM-based Seq2Seq model performed based on the linear rule rather than hierarchical rule. In essence, our model showcased a linear inductive bias, consistent with the Scratch-Seq2Seq model.