关于三重g变换及其性质

Ahmed Mahdi
{"title":"关于三重g变换及其性质","authors":"Ahmed Mahdi","doi":"10.31185/wjcms.177","DOIUrl":null,"url":null,"abstract":"In this paper, we defined new triple transformation, which is called the fractional triple g-transformation of the order αl ,0<α≤1 for fractional of differentiable functions. This transformation is generalized to double g-transformation. Which has the following form;Tg_α (u(ξ,τ,μ)=p(s)∫_0^∞▒∫_0^∞▒∫_0^∞▒〖E_α 〖(-(q_1 (s)ξ+q_2 (s)τ+q_3 (s)μ)〗^α 〖(dξ)〗^α 〖(dτ)〗^α 〖(dμ)〗^α 〗","PeriodicalId":224730,"journal":{"name":"Wasit Journal of Computer and Mathematics Science","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On triple g transformation and its properties\",\"authors\":\"Ahmed Mahdi\",\"doi\":\"10.31185/wjcms.177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we defined new triple transformation, which is called the fractional triple g-transformation of the order αl ,0<α≤1 for fractional of differentiable functions. This transformation is generalized to double g-transformation. Which has the following form;Tg_α (u(ξ,τ,μ)=p(s)∫_0^∞▒∫_0^∞▒∫_0^∞▒〖E_α 〖(-(q_1 (s)ξ+q_2 (s)τ+q_3 (s)μ)〗^α 〖(dξ)〗^α 〖(dτ)〗^α 〖(dμ)〗^α 〗\",\"PeriodicalId\":224730,\"journal\":{\"name\":\"Wasit Journal of Computer and Mathematics Science\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wasit Journal of Computer and Mathematics Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31185/wjcms.177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wasit Journal of Computer and Mathematics Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31185/wjcms.177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文定义了分数阶可微函数的新的三重变换,称为αl,0<α≤1阶的分数阶三重g变换。这个变换推广到二重g变换。以下表格;Tg_α(u(ξ,τ,μ)= p (s)∫_0 ^∞▒∫_0 ^∞▒∫_0 ^∞▒美国E_美国α(- (q_1 (s)ξ+ q_2 (s)τ+ q_3μ)〗^美国α(dξ)〗^美国α(dτ)〗^美国α(dμ)〗^α〗
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On triple g transformation and its properties
In this paper, we defined new triple transformation, which is called the fractional triple g-transformation of the order αl ,0<α≤1 for fractional of differentiable functions. This transformation is generalized to double g-transformation. Which has the following form;Tg_α (u(ξ,τ,μ)=p(s)∫_0^∞▒∫_0^∞▒∫_0^∞▒〖E_α 〖(-(q_1 (s)ξ+q_2 (s)τ+q_3 (s)μ)〗^α 〖(dξ)〗^α 〖(dτ)〗^α 〖(dμ)〗^α 〗
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信