基于RBF和线性核的支持向量机网络钓鱼检测测试比较

Rumini Rumini, Norhikmah Norhikmah, Ali Mustofa, Sulistyo Pradana
{"title":"基于RBF和线性核的支持向量机网络钓鱼检测测试比较","authors":"Rumini Rumini, Norhikmah Norhikmah, Ali Mustofa, Sulistyo Pradana","doi":"10.32520/stmsi.v12i3.2882","DOIUrl":null,"url":null,"abstract":"Phising adalah sebuah tindakan kriminal untuk mencuri informasi pribadi orang lain menggunakan entitas electronic, salah satunya adalah website. Informasi ini dicuri dari website yang telah diakses yang mengandung phising atau dengan kata lain masuk ke dalam kategori website phising. Tujuan dari web phising adalah membuat pengguna percaya bahwa mereka berinteraksi dengan situs resmi. Umumnya informasi yang dicari phisher (pelaku phising) adalah berupa username, password, baik itu akun media sosial atau akun nomor kartu kredit dengan cara diarahkan ke sebuah situs website palsu. Maka dari itu perlu adanya deteksi web phising yang berguna untuk melindungi user dari tindak pencurian informasi pengguna. Penelitian ini membahas dua kernel dalam metode SVM (Support Vector Machine) untuk deteksi web phising yaitu kernel RBF (Radial Basis Function) dan kernel linear. Akurasi yang didapatkan dengan ketiga kernel menghasilkan nilai akurasi yang berbeda-beda. Hasil akurasi pengujian sistem deketksi web phising dengan Kernel Linear sebesar 92.582 % dan Kernel Radial Basis Function sebesar 96.426 %. Akurasi paling tinggi dengan metode SVM untuk deteksi web phising yaitu menggunakan kernel RBF (Radial Basis Function).","PeriodicalId":32357,"journal":{"name":"Jurnal Sistem Informasi","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Phishing Detection Tests using the SVM Method with RBF and Linear Kernels\",\"authors\":\"Rumini Rumini, Norhikmah Norhikmah, Ali Mustofa, Sulistyo Pradana\",\"doi\":\"10.32520/stmsi.v12i3.2882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phising adalah sebuah tindakan kriminal untuk mencuri informasi pribadi orang lain menggunakan entitas electronic, salah satunya adalah website. Informasi ini dicuri dari website yang telah diakses yang mengandung phising atau dengan kata lain masuk ke dalam kategori website phising. Tujuan dari web phising adalah membuat pengguna percaya bahwa mereka berinteraksi dengan situs resmi. Umumnya informasi yang dicari phisher (pelaku phising) adalah berupa username, password, baik itu akun media sosial atau akun nomor kartu kredit dengan cara diarahkan ke sebuah situs website palsu. Maka dari itu perlu adanya deteksi web phising yang berguna untuk melindungi user dari tindak pencurian informasi pengguna. Penelitian ini membahas dua kernel dalam metode SVM (Support Vector Machine) untuk deteksi web phising yaitu kernel RBF (Radial Basis Function) dan kernel linear. Akurasi yang didapatkan dengan ketiga kernel menghasilkan nilai akurasi yang berbeda-beda. Hasil akurasi pengujian sistem deketksi web phising dengan Kernel Linear sebesar 92.582 % dan Kernel Radial Basis Function sebesar 96.426 %. Akurasi paling tinggi dengan metode SVM untuk deteksi web phising yaitu menggunakan kernel RBF (Radial Basis Function).\",\"PeriodicalId\":32357,\"journal\":{\"name\":\"Jurnal Sistem Informasi\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Sistem Informasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32520/stmsi.v12i3.2882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sistem Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32520/stmsi.v12i3.2882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络钓鱼是一种犯罪行为,使用电子实体(其中一个网站)窃取他人的个人信息。这些信息是从一个已经访问过的包含网络钓鱼的网站被盗,换句话说,它属于网络钓鱼的类别。网络钓鱼的目的是让用户相信他们正在与官方网站互动。一般来说,phisher搜索的信息是用户名、密码,无论是社交媒体账户还是信用卡号码,都指向一个虚假的网站。因此,需要一个有用的网络钓鱼检测来保护用户不受用户信息盗窃。本研究研究了SVM方法的两项内核,用于web检测RBF内核(半径基础功能)和线程内核。通过三个内核获得的精确度会产生不同的精确度值。线性钓鱼系统deketksi测试的准确率为92,582 %,内核场边功能为96426 %。使用SVM方法检测web钓鱼的最高准确性是使用RBF内核(径向基础功能)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Phishing Detection Tests using the SVM Method with RBF and Linear Kernels
Phising adalah sebuah tindakan kriminal untuk mencuri informasi pribadi orang lain menggunakan entitas electronic, salah satunya adalah website. Informasi ini dicuri dari website yang telah diakses yang mengandung phising atau dengan kata lain masuk ke dalam kategori website phising. Tujuan dari web phising adalah membuat pengguna percaya bahwa mereka berinteraksi dengan situs resmi. Umumnya informasi yang dicari phisher (pelaku phising) adalah berupa username, password, baik itu akun media sosial atau akun nomor kartu kredit dengan cara diarahkan ke sebuah situs website palsu. Maka dari itu perlu adanya deteksi web phising yang berguna untuk melindungi user dari tindak pencurian informasi pengguna. Penelitian ini membahas dua kernel dalam metode SVM (Support Vector Machine) untuk deteksi web phising yaitu kernel RBF (Radial Basis Function) dan kernel linear. Akurasi yang didapatkan dengan ketiga kernel menghasilkan nilai akurasi yang berbeda-beda. Hasil akurasi pengujian sistem deketksi web phising dengan Kernel Linear sebesar 92.582 % dan Kernel Radial Basis Function sebesar 96.426 %. Akurasi paling tinggi dengan metode SVM untuk deteksi web phising yaitu menggunakan kernel RBF (Radial Basis Function).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
12
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信